[1] |
Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090.
|
[2] |
崔巍,孙晓雷,李红霞. 蒙古族原发性闭角型青光眼小梁组织的超微结构[J]. 眼科研究,2010,28(7):650-653.
|
[3] |
孔亚男,陆宏,陈颖,等. 青光眼滤过术后瘢痕形成机制及抗瘢痕化研究进展[J]. 国际眼科杂志,2019,19(10):1688-1691.
|
[4] |
Stürmer JPE, Faschinger C. Do we perform glaucoma surgery too late?[J]. Klinische Monatsblatter fur Augenheilkunde, 2017, 235(11): 1269-1277.
|
[5] |
于雪婷,孙兴怀. 青光眼手术滤过通道抗瘢痕化的药物研究[J]. 国际眼科纵览,2018,42(5):289-296.
|
[6] |
Li Z, van Bergen T, van de Veire S, et al. Inhibition of vascular endothelial growth factor reduces scar formation after glaucoma filtration surgery[J]. Invest Ophthmol Vis Sci, 2009, 50(11): 5217-5225.
|
[7] |
Zhang HT, Scott PAE, Morbidelli L, et al. The 121 amino acid isoform of vascular endothelial growth factor is more strongly tumorigenic than other splice variants in vivo[J]. British Journal of Cancer, 2000, 83(1): 63-68.
|
[8] |
van Bergen T, Vandewalle E, van de Veire S, et al. The role of different VEGF isoforms in scar formation after glaucoma filtration surgery[J]. Exp Eye Res, 2011, 93(5): 689-699.
|
[9] |
Canneliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contfibutes to angiogenesis and plasma extravasation in pathological conditions[J]. Nat Med, 2001, 7(5): 575-583.
|
[10] |
Lopilly PHY, Kim JH, Ahn MD, et al. Level of vascular endothelial growth factor in tenon tissue and results of glaucoma surgery[J]. Arch Ophthalmol, 2012, 130(6):685-689.
|
[11] |
张大卫. 兔眼青光眼滤过术后手术区组织TGF-B1、bFGF表达的实验研究[D]. 天津:天津医科大学,2004.
|
[12] |
Stahnke T, Kowtharapu BS, Stachs O, et al. Suppression of TGF-β pathway by pirfenidone decreases extracellular matrix deposition in ocular fibroblastsin vitro[J]. PLoS One, 2017, 12(2): e0172592.
|
[13] |
李静,谢安明. 结缔组织生长因子对人Tenon囊成纤维细胞中E-cadherin蛋白表达的促进作用[J]. 中华实验眼科杂志,2015,33(8):695-698.
|
[14] |
Weng HL, Wang BE, Jia JD, et al. Effect of interferon-gamma on hepatic fibrosis in chronic hepatitis B virus infection: a randomized controlled study[J]. Clinical Gastroenterology and Hepatology, 2005, 3(8): 819-828.
|
[15] |
Wang XY, Crowston JG, Zoellner H, et al. Interferon-α and interferon-γ sensitize human tenon fibroblasts to mitomycin-C[J]. Invest Ophthmol Vis Sci, 2007, 48(8): 3655-3661.
|
[16] |
Cui W, Zhang H, Liu ZL. Interleukin-6 receptor blockade suppresses subretinal fibrosis in a mouse model[J]. Int J Ophthal, 2014, 7(2): 194-197.
|
[17] |
Farooqi AA, Waseem S, Riaz AM, et al. PDGF: the nuts and bolts of signalling toolbox[J]. Tumor Biology, 2011, 32(6): 1057-1070.
|
[18] |
Dadrich M, Nicolay NH, Flechsig P, et al. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis[J]. Oncoimmunology, 2016, 5(5): e1123366.
|
[19] |
Siedlecki J, Asani B, Wertheimer C, et al. Combined VEGF/PDGF inhibition using axitinib induces αSMA expression and a pro-fibrotic phenotype in human pericytes[J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(6): 1141-1149.
|
[20] |
Fuller JR. Anti-inflammatory fibrosis suppression in threatened trabeculectomy bleb failure produces good long term control of intraocular pressure without risk of sight threatening complications[J]. Brit J Ophthalmol, 2002, 86(12):1352-1354.
|
[21] |
Koval MS, Moster MR, Freidl KB, et al. Intracameral triamcinolone acetonide in glaucoma surgery: a prospective randomized controlled trial[J]. Am J Ophthal, 2014, 158(2):395-401.
|
[22] |
Na JH, Sung KR, Jin AS, et al. Antifibrotic effects of pirfenidone on Tenon′s fibroblasts in glaucomatous eyes: comparison with mitomycin C and 5-fluorouracil[J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253 (9):1537-1545.
|
[23] |
Lama PJ, Fechtner RD. Antifibrotics and wound healing in glaucoma surgery[J]. Surv Ophthalmol, 2003, 48(3): 314-346.
|
[24] |
郑露,李杜军,罗继红. 青光眼滤过手术抗瘢痕化药物和治疗方法的研究进展[J]. 中西医结合研究,2014,6(5):266-269.
|
[25] |
Green E, Wilkins M, Bunce C, et al. 5-Fluorouracil for glaucoma surgery[J]. Cochrane Database of Systematic Reviews, 2014: CD001132.
|
[26] |
Lindemann F, Plange N, Kuerten D, et al. Three-year follow-up of trabeculectomy with 5-fluorouraeil[J]. Ophthalmic Res, 2017, 58 (2): 74-80.
|
[27] |
Rao A, Chatterjee S. Epiconjunetival mitomyein C application for early failing filtering blebs[J]. Semin Ophthalmol, 2014, 29(1): 48-51.
|
[28] |
Edward D, A1 Habash A, Aljasim L, et al. A review of the efficacy of mitomycin C in glaucoma filtration surgery[J]. Clin Ophthalmol, 2015, 9: 1945-1951.
|
[29] |
Khouri SA, Huang G, Huang YL. Intraoperative injection vs sponge applied mitomyein C during trabeculectomy: one-year study[J]. J Curt Glaucoma Praet, 2017, 11(3): 101-106.
|
[30] |
Lim MC, Hom B, Watnik MR, et al. A comparison of trabeculectomy surgery outcomes with mitomycin-C applied by intra-Tenon injection versus sponge[J]. Am J Ophthal, 2020, 216: 243-256.
|
[31] |
Halili A, Kessel L, Subhi Y, et al. Needling after trabeculectomy——does augmentation by anti-metabolites provide better outcomes and is mitomycin C better than 5-fluoruracil? A systematic review with network meta-analyses[J]. Acta Ophthalmologica, 2020, 98(7): 643-653.
|
[32] |
Akarsu C, Onol MB. Postoperative 5-fluorouracil versus intraoperative mitomycin C in high-risk glaucoma filtering surgery: extended follow up[J]. Clin Exp Ophthalmol, 2010, 31(3):199-205.
|
[33] |
Pimentel E, Schmidt J. Is mytomicyn better than 5-fluorouracil as antimetabolite in trabeculectomy for glaucoma? [J] Medwave, 2018, 18(1):e7137.
|
[34] |
张绍丹,吴作红. 5-氟尿嘧啶结膜下注射致全身性变态反应一例[J]. 中华实验眼科杂志,2019,37(10):791-792.
|
[35] |
方立建,魏文斌. 康柏西普玻璃体腔内注射联合阈值下微脉冲激光治疗糖尿病黄斑水肿的临床研究[J].中华眼科医学杂志(电子版),2020,10(2):90-96.
|
[36] |
马建民,赵家良. 转化生长因子β及其在青光眼术后滤过泡瘢痕化中作用的研究进展[J]. 国外医学(眼科学分册),2004,28(5):320-323.
|
[37] |
Md-Noh SM, Sheikh AKSH, Bannur ZM, et al. Effects of ranibizumab on the extracellular matrix production by human Tenon′s fibroblast[J]. Exp Eye Res, 2014, 127:236-242.
|
[38] |
Cheng JW, Cheng SW, Wei RL, et al. Anti-vascular endothelial growth factor for control of wound healing in glaucoma surgery[J]. Cochrane Database of Systematic Reviews (Online), 2016: CD009782.
|
[39] |
Miraftabi A, Nilforushan N. Wound dehiscence and device migration after subconjunctival bevacizumab injection with Ahmed glaucoma valve implantation[J]. J Ophthalmic Vis Res, 2016, 11(1): 112-115.
|
[40] |
Turgut B, Eren K, Akin MM, et al. Impact of trastuzumab on wound healing in experimental glaucoma surgery[J]. Clin Exp Ophthalmol, 2015, 43(1): 67-76.
|
[41] |
Liu X, Yang Y, Guo X, et al. The antiangiogenesis effect of pirfenidone in wound healing in vitro[J]. J Ocul Pharmacol Ther, 2017, 33(9): 693-703.
|
[42] |
胡佩宏. 吡非尼酮抑制兔眼抗青光眼滤过性手术后外引流通道瘢痕化的实验研究[D]. 南昌:南昌大学,2016.
|
[43] |
Cordeiro MF, Gay JA, Khaw PT. Human anti-transforming growth factor-β2 antibody: a new glaucoma anti-scarring agent[J]. Invest Ophthmol Vis Sci, 1999, 40(10): 2225-2234.
|
[44] |
CAT-152 0102 Trabeculectomy Study Group. A phase Ⅲ study of subconjunctival human anti-transforming growth factor β2 monoclonal antibody (CAT-152) to prevent scarring after first-time trabeculectomy[J]. Ophthalmology, 2007, 114(10): 1822-1830.
|
[45] |
Fu S, Wang H, Zhang J, et al. Overexpression of ALK5 induces human Tenon′s capsule fibroblasts transdifferentiation and fibrosis in vitro[J]. Cur Eye Res, 2017, 42(7): 1018-1028.
|
[46] |
Seet LF, Toh LZ, Finger SN, et al. Valproic acid suppresses collagen by selective regulation of Smads in conjunctival fibrosis[J]. J Mol Med, 2016, 94(3): 321-334.
|
[47] |
Yan Z, Bai Y, Tian Z, et al. Anti-proliferation effects of Sirolimus sustained delivery film in rabbit glaucoma filtration surgery[J]. Molecular Vision, 2011, 17: 2495.
|
[48] |
Adachi K, Asada Y, Hirakata T, et al. Alteration of gene expression in mice after glaucoma filtration surgery[J]. Sci Rep, 2020, 10: 15036.
|
[49] |
Heatley G, Kiland J, Faha B, et al. Gene therapy using p21WAF-1/Cip-1 to modulate wound healing after glaucoma trabeculectomy surgery in a primate model of ocular hypertension[J]. Gene Ther, 2004, 11(12): 949-955.
|
[50] |
Li Z, Wen H, , Li X, et al. Suppression of human tenon fibroblast cell proliferation by lentivirus-mediated vegf small hairpin RNA[J]. J Ophthal, 2017, 17:7982051.
|
[51] |
Li N, Cui J, Duan X, et a1. Suppression of type I collagen expression by mi R-29b via P13K, Akt, and Spl pathway in human Tenong fibroblasts[J]. Invest Ophthalmol Vis Sci, 2012, 53(3): 1670-1678.
|
[52] |
Pfeiffer N, Voykov B, Renieri G, et al. First-in-human phase I study of ISTH0036, an antisense oligonucleotide selectively targeting transforming growth factor beta 2 (TGF-β2), in subjects with open-angle glaucoma undergoing glaucoma filtration surgery[J]. PloS One, 2017, 12(11): e0188899.
|
[53] |
Butler MR, Ponce CMP, Weinstock YE, et al. Topical silver nanoparticles result in improved bleb function by increasing filtration and reducing fibrosis in a rabbit model of filtration surgery[J]. Invest Ophthmol Vis Sci, 2013, 54(7): 4982-4990.
|
[54] |
Qiao X, Peng X, Qiao J, et al. Evaluation of a photo-crosslinkable hydroxyethyl chitosan hydrogel as a potential drug release system for glaucoma surgery[J]. J Mater Sci, 2017, 28(10): 149-159.
|
[55] |
Fili S, Seddig S, Kohlhaas M. Long-term results after trabe-culectomy combined with mitomycin C and Ologen implant[J]. Klinische Monatsblatter fur Augenheilkunde, 2018, 236(9): 1107-1114.
|
[56] |
Ponnusamy T, Yu H, John VT, et al. A novel antiproliferative drug coating for glaucoma drainage devices[J]. J Glaucoma, 2014, 23(8): 526-534.
|