切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2021, Vol. 11 ›› Issue (02) : 119 -123. doi: 10.3877/cma.j.issn.2095-2007.2021.02.011

所属专题: 青少年近视防控

综述

自主神经控制与近视眼发病机制的研究进展
慕璟玉1, 王雁2, 张芮3, 杨依宁1, 高云仙2,()   
  1. 1. 830000 乌鲁木齐,新疆医科大学第四临床医学院2019级硕士研究生
    2. 830000 乌鲁木齐,新疆医科大学附属中医医院眼一科;830000 乌鲁木齐,新疆维吾尔自治区中医药研究院眼科
    3. 830000 乌鲁木齐,新疆医科大学第四临床医学院2018级硕士研究生
  • 收稿日期:2021-02-08 出版日期:2021-04-28
  • 通信作者: 高云仙
  • 基金资助:
    新疆维吾尔自治区自然科学基金(2019D01C176)

Advances on the autonomic nerve control and pathogenesis of myopia

Jingyu Mu1, Yan Wang2, Rui Zhang3, Yining Yang1, Yunxian Gao2,()   

  1. 1. Master′s degree 2019, The Fourth Clinical College of Xinjiang Medical University, Wulumuqi 830000, China
    2. The First Department of Ophthalmology, Traditional Chinese Medicine Hospital affiliated to Xinjiang Medical Universtity, Wulumuqi 830000, China; Department of Ophthalmology, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Wulumuqi 830000, China
    3. Master′s degree 2018, The Fourth Clinical College of Xinjiang Medical University, Wulumuqi 830000, China
  • Received:2021-02-08 Published:2021-04-28
  • Corresponding author: Yunxian Gao
引用本文:

慕璟玉, 王雁, 张芮, 杨依宁, 高云仙. 自主神经控制与近视眼发病机制的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(02): 119-123.

Jingyu Mu, Yan Wang, Rui Zhang, Yining Yang, Yunxian Gao. Advances on the autonomic nerve control and pathogenesis of myopia[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2021, 11(02): 119-123.

近年来,近视眼的发病率逐年提高且有低龄化趋势。儿童青少年近视眼的防控问题,已得到全社会和国家主管部门的广泛关注。有关近视眼发病机制的研究,已成为当前的研究热点。眼部的自主神经影响着眼的调节功能、血流微循环及眼内压的变化,在近视眼的发生与发展中扮演了十分重要的角色。本文中笔者就眼部自主神经影响近视眼的作用机制进行综述。

In recent years, the incidence rate of myopia has been increasing year by year and has a trend of younger age. The prevention and control of myopia in children and adolescents has been widely concerned by the whole society and national authorities. The pathogenesis of myopia was focused on recently. Ocular autonomic nerve plays an important role in the occurrence and development of myopia. In this paper, the mechanism of ocular autonomic nerve affecting myopia was reviewed.

图1 眼的交感和副交感神经支配示意图 括号中为通常存在于神经节后神经元中的神经递质和神经肽。*,示迄今为止仅在鸟类的研究中可见(图转自2015年,McDougal等[6]的参考文献)
表1 不同干预措施对屈光不正调节指标的影响
表2 虹膜和睫状体结构中受体的类型及作用
图2 房水形成和通过小梁网和葡萄膜巩膜途径流出示意图 (图转自2015年,McDougal等[6]的参考文献)
[1]
Wu PC, Huang HM, Yu HJ, et al. Epidemiology of Myopia[J]. Asia Pac J Ophthalmol (Phila).2016, 5(6): 386-393.
[2]
Dong L, Kang YK, Li Y, et al. Prevalence and time trends of myopia in children and adolescents in china: A Systemic Review and Meta-Analysis[J]. Retina (Philadelphia, Pa), 2020, 40(3): 399-411.
[3]
Holden BA, Fricke TR, Wilson DA, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042.
[4]
Morgan IG, He M, Rose KA. Epidemic of pathologic myopia: what can laboratory studies and epidemiology tell us?[J]. Retina, 2017, 37(5): 989-997.
[5]
訾迎新,金明. 高度近视眼底改变的最新研究进展[J].眼科新进展201939(12): 1197-1200.
[6]
McDougal DH, Gamlin PD. Autonomic control of the eye[J]. Compr Physiol.2015, 5(1): 439-473.
[7]
Kozicz T, Bittencourt JC, May PJ, et al. The Edinger-Westphal nucleus: a historical, structural, and functional perspective on a dichotomous terminology[J]. J Comp Neurol.2011, 519(8): 1413-1434.
[8]
Dos Santos Júnior ED, Da Silva AV, Da Silva KR, et al. The centrally projecting Edinger-Westphal nucleus--I: Efferents in the rat brain[J]. J Chem Neuroanat.2015, 68: 22-38.
[9]
Agassandian K, Fazan VP, Adanina V, et al. Direct projections from the cardiovascular nucleus tractus solitarii to pontine preganglionic parasympathetic neurons: a link to cerebrovascular regulation[J]. J Comp Neurol.2002, 452(3): 242-254.
[10]
Ruskell GL. Access of autonomic nerves through the optic canal, and their orbital distribution in man[J]. Anat Rec A Discov Mol Cell Evol Biol, 2003, 275(1): 973-978.
[11]
Lindberg L. Akkommodaatiospasmi Spasm of accommodation[J]. Duodecim.2014, 130(2): 168-173.
[12]
Zhao F, Zhang D, Zhou Q, et al. Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis[J]. EBioMedicine, 2020, 57: 102878.
[13]
Mutti DO, Mitchell GL, Jones-Jordan LA, et al. The Response AC/A Ratio Before and After the Onset of Myopia[J]. Invest Ophthalmol Vis Sci.2017, 58(3): 1594-1602.
[14]
Cheng X, Xu J, Brennan NA. Accommodation and its role in myopia progression and control with soft contact lenses[J]. Ophthalmic Physiol Opt, 2019, 39(3): 162-171.
[15]
Han X, Xu D, Ge W, et al. A Comparison of the Effects of Orthokeratology Lens, Medcall Lens, and Ordinary Frame Glasses on the Accommodative Response in Myopic Children. Eye Contact Lens[J]. 2018, 44(4): 268-271.
[16]
Yang Y, Wang L, Li P, et al. Accommodation function comparison following use of contact lens for orthokeratology and spectacle use in myopic children: a prospective controlled trial[J]. Int J Ophthalmol, 2018, 11(7): 1234-1238.
[17]
Fu A, Stapleton F, Wei L, et al. Effect of low-dose atropine on myopia progression, pupil diameter and accommodative amplitude: low-dose atropine and myopia progression[J]. Br J Ophthalmol, 2020, 104(11): 1535-1541.
[18]
Yam JC, Jiang Y, Tang SM, et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study: A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control[J]. Ophthalmology, 2019, 126(1): 113-124.
[19]
Gupta N, McAllister R, Drance SM, et al. Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography[J]. Br J Ophthalmol, 1994, 78(7): 555-559.
[20]
Mitchelson F. Muscarinic receptor agonists and antagonists: effects on ocular function[J]. Handb Exp Pharmacol, 2012, 208: 263-298.
[21]
Bernhard M, Takeda K, Keller C, et al. 3H-Noradrenaline release from mouse iris-ciliary body: role of presynaptic muscarinic heteroreceptors[J]. Naunyn Schmiedebergs Arch Pharmacol, 2004, 370(4): 305-313.
[22]
Honkanen RE, Howard EF, Abdel-Latif AA. M3-muscarinic receptor subtype predominates in the bovine iris sphincter smooth muscle and ciliary processes[J]. Invest Ophthalmol Vis Sci, 1990, 31(3): 590-593.
[23]
Choppin A, Eglen RM. Pharmacological characterization of muscarinic receptors in dog isolated ciliary and urinary bladder smooth muscle[J]. Br J Pharmacol, 2001, 132(4): 835-842.
[24]
Wax MB, Molinoff PB. Distribution and properties of beta-adrenergic receptors in human iris-ciliary body[J]. Invest Ophthalmol Vis Sci, 1987, 28(3): 420-430.
[25]
Crider JY, Sharif NA. Adenylyl cyclase activity mediated by beta-adrenoceptors in immortalized human trabecular meshwork and non-pigmented ciliary epithelial cells[J]. J Ocul Pharmacol Ther, 2002, 18(3): 221-230.
[26]
Suzuki F, Taniguchi T, Nakamura S, et al. Distribution of alpha-1 adrenoceptor subtypes in RNA and protein in rabbit eyes[J]. Br J Pharmacol, 2002, 135(3): 600-608.
[27]
Wikberg-Matsson A, Wikberg JE, Uhlén S. Characterization of alpha 2-adrenoceptor subtypes in the porcine eye: identification of alpha 2A-adrenoceptors in the choroid, ciliary body and iris, and alpha 2A- and alpha 2C-adrenoceptors in the retina[J]. Exp Eye Res, 1996, 63(1): 57-66.
[28]
Zhang S, Zhang G, Zhou X, et al. Changes in Choroidal Thickness and Choroidal Blood Perfusion in Guinea Pig Myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3074-3083.
[29]
Read SA, Collins MJ, Vincent SJ, et al. Choroidal thickness in myopic and nonmyopic children assessed with enhanced depth imaging optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7578-7586.
[30]
Tuncer I, Karahan E, Zengin MO, et al. Choroidal thickness in relation to sex, age, refractive error, and axial length in healthy Turkish subjects[J]. Int Ophthalmol, 2015, 35(3): 403-410.
[31]
徐玲,易敬林,杜红岩. 近视眼儿童黄斑中心凹下脉络膜厚度的变化特征及影响因素[J].国际眼科杂志202121(3): 540-544.
[32]
Reiner A, Fitzgerald MEC, Del Mar N, et al. Neural control of choroidal blood flow[J]. Prog Retin Eye Res, 2018, 64: 96-130.
[33]
Stübinger K, Brehmer A, Neuhuber WL, et al. Intrinsic choroidal neurons in the chicken eye: chemical coding and synaptic input[J]. Histochem Cell Biol, 2010, 134(2): 145-157.
[34]
Kee CS, Marzani D, Wallman J. Differences in time course and visual requirements of ocular responses to lenses and diffusers[J]. Invest Ophthalmol Vis Sci, 2001, 42(3): 575-583.
[35]
Jensen H. Myopia progression in young school children and intraocular pressure[J]. Doc Ophthalmol, 1992, 82(3): 249-255.
[36]
Yan L, Huibin L, Xuemin L. Accommodation-induced intraocular pressure changes in progressing myopes and emmetropes[J]. Eye (Lond), 2014, 28(11): 1334-1340.
[37]
Li SM, Iribarren R, Li H, et al. Intraocular pressure and myopia progression in Chinese children: the Anyang Childhood Eye Study[J]. Br J Ophthalmol, 2019, 103(3): 349-354.
[38]
魏士飞,李仕明,严然,等. 儿童眼压与近视眼屈光度的相关性[J].中华眼视光学与视觉科学杂志202022(9): 659-664.
[39]
邓媛,荣敏娜,邓文,等. 眼压对青少年近视眼进展的影响[J].中华眼视光学与视觉科学杂志201820(3): 133-138.
[40]
江文捷,曲超. 眼调节对正视眼和不同类型近视眼眼压的影响[J].国际眼科杂志202020(12): 2146-2150.
[41]
Goldberg DB. Computer-animated model of accommodation and theory of reciprocal zonular action[J]. Clin Ophthalmol, 2011, 5: 1559-1566.
[42]
Gupta N, McAllister R, Drance SM, et al. Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography[J]. Br J Ophthalmol, 1994, 78(7): 555-559.
[43]
Ikegami K, Shigeyoshi Y, Masubuchi S. Circadian Regulation of IOP Rhythm by Dual Pathways of Glucocorticoids and the Sympathetic Nervous System[J]. Invest Ophthalmol Vis Sci, 2020, 61(3): 26.
[44]
Brooks AM, Gillies WE. Ocular beta-blockers in glaucoma management. Clinical pharmacological aspects[J]. Drugs Aging, 1992, 2(3): 208-221.
[45]
Galindo-Romero C, Harun-Or-Rashid M, Jiménez-López M, et al. Neuroprotection by α2-Adrenergic Receptor Stimulation after Excitotoxic Retinal Injury: A Study of the Total Population of Retinal Ganglion Cells and Their Distribution in the Chicken Retina[J]. PLoS One, 2016 , 11(9): e0161862.
[46]
Ishii M, Kurachi Y. Muscarinic acetylcholine receptors[J]. Curr Pharm Des, 2006, 12(28): 3573-3581.
[47]
Chen W, Chen L, Chen Z, et al. Influence of the Water-Drinking Test on Intraocular Pressure, Schlemm's Canal, and Autonomic Nervous System Activity[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3232-3238.
[48]
Mitchelson F. Muscarinic receptor agonists and antagonists: effects on ocular function[J]. Handb Exp Pharmacol, 2012, 208: 263-298.
[49]
Chen W, Chen Z, Xiang Y, et al. Simultaneous influence of sympathetic autonomic stress on Schlemm's canal, intraocular pressure and ocular circulation[J]. Sci Rep, 2019, 9(1): 20060.
[50]
Johnson M, McLaren JW, Overby DR. Unconventional aqueous humor outflow: A review[J]. Exp Eye Res, 2017, 158: 94-111.
[51]
Kiel JW, Hollingsworth M, Rao R, et al. Ciliary blood flow and aqueous humor production[J]. Prog Retin Eye Res, 2011, 30(1): 1-17.
[52]
Michelson G, Groh MJ. Dipivefrin reduces blood flow in the ciliary body in humans[J]. Ophthalmology, 1994, 101(4): 659-664.
[53]
Uusitalo H, Lehtosalo JI, Palkama A. Vasoactive intestinal polypeptide-immunoreactive nerve fibers in the anterior uvea of the guinea pig[J]. Ophthalmic Res, 1985, 17(4): 235-240.
[54]
Stone RA, Tervo T, Tervo K, et al. Vasoactive intestinal polypeptide-like immunoreactive nerves to the human eye[J]. Acta Ophthalmol (Copenh), 1986, 64(1): 12-18.
[55]
Huang J, Wen D, Wang Q, et al. Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-analysis[J]. Ophthalmology, 2016, 123(4): 697-708.
[56]
Wei S, Li SM, An W, et al. Safety and Efficacy of Low-Dose Atropine Eyedrops for the Treatment of Myopia Progression in Chinese Children: A Randomized Clinical Trial[J]. JAMA Ophthalmol, 2020, 138(11): 1178-1184.
[57]
许多,刘明明,杨红,等. 视觉功能训练联合托吡卡胺滴眼液治疗假性近视眼的临床疗效观察[J].现代生物医学进展202020(19): 3673-3677.
[58]
秦晶晶,王紫艺,范丽英. 视觉训练对伴调节不足的青少年的近视眼防控效果[J].中国实用医药202015(31): 196-198.
[1] 卢鑫, 魏昕, 王志斌. 重组人可溶性血栓调节蛋白治疗脓毒症合并弥散性血管内凝血临床疗效的Meta分析[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 123-129.
[2] 邓欣怡, 曾振宇, 李晓岚. 细菌群体感应信号对宿主免疫调节机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 140-147.
[3] 陈珊, 胡智强, 张月明, 唐定, 黎蒙, 赵帅. Orai1、Orai3在乳腺癌组织中的表达及与病理学指标的相关性分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 514-517.
[4] 崔键, 戴庆. 基于肝囊型包虫病所致过敏反应模型研究Treg细胞数量比例与过敏反应的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 427-430.
[5] 朱青青, 卫贞祺. 腹股沟疝患者围手术期自我能效管理探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 773-777.
[6] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[7] 刘康凯, 姚光辉. 补肺纳肾汤对COPD稳定期患者肺功能及外周血Treg、Th17细胞比率的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 376-378.
[8] 娜荷雅, 朱丹. 红光疗法在儿童近视眼防控中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 252-256.
[9] 赵欣, 赵晴, 张华. 角膜地形图引导个性化切削屈光术矫正近视眼和散光的早期临床疗效[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 210-214.
[10] 任美琪, 李俊红, 冯张青. 间歇性外斜视新型热点问题的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 162-166.
[11] 刘德海, 刘一昀, 蓝倩倩, 孙彤, 边林博, 秦锐, 邱磊, 周一凡, 齐虹. 老视药物疗法的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 177-182.
[12] 赵艳, 朱丹. 低浓度阿托品在儿童近视眼防控中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 124-128.
[13] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[14] 李世浩, 李子豪, 董博, 吴春莉, 吴彬, 盛银良, 齐宇. 胞质分裂蛋白调节因子1对肺腺癌细胞迁移、侵袭和增殖的影响[J]. 中华胸部外科电子杂志, 2023, 10(03): 164-175.
[15] 金泽平, 董晶, 柳云鹏, 汪阳. 菌群-肠道-脑轴与缺血性卒中危险因素关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 510-517.
阅读次数
全文


摘要