[1] |
Wu PC, Huang HM, Yu HJ, et al. Epidemiology of Myopia[J]. Asia Pac J Ophthalmol (Phila).2016, 5(6): 386-393.
|
[2] |
Dong L, Kang YK, Li Y, et al. Prevalence and time trends of myopia in children and adolescents in china: A Systemic Review and Meta-Analysis[J]. Retina (Philadelphia, Pa), 2020, 40(3): 399-411.
|
[3] |
Holden BA, Fricke TR, Wilson DA, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042.
|
[4] |
Morgan IG, He M, Rose KA. Epidemic of pathologic myopia: what can laboratory studies and epidemiology tell us?[J]. Retina, 2017, 37(5): 989-997.
|
[5] |
訾迎新,金明. 高度近视眼底改变的最新研究进展[J].眼科新进展,2019,39(12): 1197-1200.
|
[6] |
McDougal DH, Gamlin PD. Autonomic control of the eye[J]. Compr Physiol.2015, 5(1): 439-473.
|
[7] |
Kozicz T, Bittencourt JC, May PJ, et al. The Edinger-Westphal nucleus: a historical, structural, and functional perspective on a dichotomous terminology[J]. J Comp Neurol.2011, 519(8): 1413-1434.
|
[8] |
Dos Santos Júnior ED, Da Silva AV, Da Silva KR, et al. The centrally projecting Edinger-Westphal nucleus--I: Efferents in the rat brain[J]. J Chem Neuroanat.2015, 68: 22-38.
|
[9] |
Agassandian K, Fazan VP, Adanina V, et al. Direct projections from the cardiovascular nucleus tractus solitarii to pontine preganglionic parasympathetic neurons: a link to cerebrovascular regulation[J]. J Comp Neurol.2002, 452(3): 242-254.
|
[10] |
Ruskell GL. Access of autonomic nerves through the optic canal, and their orbital distribution in man[J]. Anat Rec A Discov Mol Cell Evol Biol, 2003, 275(1): 973-978.
|
[11] |
Lindberg L. Akkommodaatiospasmi Spasm of accommodation[J]. Duodecim.2014, 130(2): 168-173.
|
[12] |
Zhao F, Zhang D, Zhou Q, et al. Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis[J]. EBioMedicine, 2020, 57: 102878.
|
[13] |
Mutti DO, Mitchell GL, Jones-Jordan LA, et al. The Response AC/A Ratio Before and After the Onset of Myopia[J]. Invest Ophthalmol Vis Sci.2017, 58(3): 1594-1602.
|
[14] |
Cheng X, Xu J, Brennan NA. Accommodation and its role in myopia progression and control with soft contact lenses[J]. Ophthalmic Physiol Opt, 2019, 39(3): 162-171.
|
[15] |
Han X, Xu D, Ge W, et al. A Comparison of the Effects of Orthokeratology Lens, Medcall Lens, and Ordinary Frame Glasses on the Accommodative Response in Myopic Children. Eye Contact Lens[J]. 2018, 44(4): 268-271.
|
[16] |
Yang Y, Wang L, Li P, et al. Accommodation function comparison following use of contact lens for orthokeratology and spectacle use in myopic children: a prospective controlled trial[J]. Int J Ophthalmol, 2018, 11(7): 1234-1238.
|
[17] |
Fu A, Stapleton F, Wei L, et al. Effect of low-dose atropine on myopia progression, pupil diameter and accommodative amplitude: low-dose atropine and myopia progression[J]. Br J Ophthalmol, 2020, 104(11): 1535-1541.
|
[18] |
Yam JC, Jiang Y, Tang SM, et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study: A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control[J]. Ophthalmology, 2019, 126(1): 113-124.
|
[19] |
Gupta N, McAllister R, Drance SM, et al. Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography[J]. Br J Ophthalmol, 1994, 78(7): 555-559.
|
[20] |
Mitchelson F. Muscarinic receptor agonists and antagonists: effects on ocular function[J]. Handb Exp Pharmacol, 2012, 208: 263-298.
|
[21] |
Bernhard M, Takeda K, Keller C, et al. 3H-Noradrenaline release from mouse iris-ciliary body: role of presynaptic muscarinic heteroreceptors[J]. Naunyn Schmiedebergs Arch Pharmacol, 2004, 370(4): 305-313.
|
[22] |
Honkanen RE, Howard EF, Abdel-Latif AA. M3-muscarinic receptor subtype predominates in the bovine iris sphincter smooth muscle and ciliary processes[J]. Invest Ophthalmol Vis Sci, 1990, 31(3): 590-593.
|
[23] |
Choppin A, Eglen RM. Pharmacological characterization of muscarinic receptors in dog isolated ciliary and urinary bladder smooth muscle[J]. Br J Pharmacol, 2001, 132(4): 835-842.
|
[24] |
Wax MB, Molinoff PB. Distribution and properties of beta-adrenergic receptors in human iris-ciliary body[J]. Invest Ophthalmol Vis Sci, 1987, 28(3): 420-430.
|
[25] |
Crider JY, Sharif NA. Adenylyl cyclase activity mediated by beta-adrenoceptors in immortalized human trabecular meshwork and non-pigmented ciliary epithelial cells[J]. J Ocul Pharmacol Ther, 2002, 18(3): 221-230.
|
[26] |
Suzuki F, Taniguchi T, Nakamura S, et al. Distribution of alpha-1 adrenoceptor subtypes in RNA and protein in rabbit eyes[J]. Br J Pharmacol, 2002, 135(3): 600-608.
|
[27] |
Wikberg-Matsson A, Wikberg JE, Uhlén S. Characterization of alpha 2-adrenoceptor subtypes in the porcine eye: identification of alpha 2A-adrenoceptors in the choroid, ciliary body and iris, and alpha 2A- and alpha 2C-adrenoceptors in the retina[J]. Exp Eye Res, 1996, 63(1): 57-66.
|
[28] |
Zhang S, Zhang G, Zhou X, et al. Changes in Choroidal Thickness and Choroidal Blood Perfusion in Guinea Pig Myopia[J]. Invest Ophthalmol Vis Sci, 2019, 60(8): 3074-3083.
|
[29] |
Read SA, Collins MJ, Vincent SJ, et al. Choroidal thickness in myopic and nonmyopic children assessed with enhanced depth imaging optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7578-7586.
|
[30] |
Tuncer I, Karahan E, Zengin MO, et al. Choroidal thickness in relation to sex, age, refractive error, and axial length in healthy Turkish subjects[J]. Int Ophthalmol, 2015, 35(3): 403-410.
|
[31] |
徐玲,易敬林,杜红岩. 近视眼儿童黄斑中心凹下脉络膜厚度的变化特征及影响因素[J].国际眼科杂志,2021,21(3): 540-544.
|
[32] |
Reiner A, Fitzgerald MEC, Del Mar N, et al. Neural control of choroidal blood flow[J]. Prog Retin Eye Res, 2018, 64: 96-130.
|
[33] |
Stübinger K, Brehmer A, Neuhuber WL, et al. Intrinsic choroidal neurons in the chicken eye: chemical coding and synaptic input[J]. Histochem Cell Biol, 2010, 134(2): 145-157.
|
[34] |
Kee CS, Marzani D, Wallman J. Differences in time course and visual requirements of ocular responses to lenses and diffusers[J]. Invest Ophthalmol Vis Sci, 2001, 42(3): 575-583.
|
[35] |
Jensen H. Myopia progression in young school children and intraocular pressure[J]. Doc Ophthalmol, 1992, 82(3): 249-255.
|
[36] |
Yan L, Huibin L, Xuemin L. Accommodation-induced intraocular pressure changes in progressing myopes and emmetropes[J]. Eye (Lond), 2014, 28(11): 1334-1340.
|
[37] |
Li SM, Iribarren R, Li H, et al. Intraocular pressure and myopia progression in Chinese children: the Anyang Childhood Eye Study[J]. Br J Ophthalmol, 2019, 103(3): 349-354.
|
[38] |
魏士飞,李仕明,严然,等. 儿童眼压与近视眼屈光度的相关性[J].中华眼视光学与视觉科学杂志,2020,22(9): 659-664.
|
[39] |
邓媛,荣敏娜,邓文,等. 眼压对青少年近视眼进展的影响[J].中华眼视光学与视觉科学杂志,2018,20(3): 133-138.
|
[40] |
江文捷,曲超. 眼调节对正视眼和不同类型近视眼眼压的影响[J].国际眼科杂志,2020,20(12): 2146-2150.
|
[41] |
Goldberg DB. Computer-animated model of accommodation and theory of reciprocal zonular action[J]. Clin Ophthalmol, 2011, 5: 1559-1566.
|
[42] |
Gupta N, McAllister R, Drance SM, et al. Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography[J]. Br J Ophthalmol, 1994, 78(7): 555-559.
|
[43] |
Ikegami K, Shigeyoshi Y, Masubuchi S. Circadian Regulation of IOP Rhythm by Dual Pathways of Glucocorticoids and the Sympathetic Nervous System[J]. Invest Ophthalmol Vis Sci, 2020, 61(3): 26.
|
[44] |
Brooks AM, Gillies WE. Ocular beta-blockers in glaucoma management. Clinical pharmacological aspects[J]. Drugs Aging, 1992, 2(3): 208-221.
|
[45] |
Galindo-Romero C, Harun-Or-Rashid M, Jiménez-López M, et al. Neuroprotection by α2-Adrenergic Receptor Stimulation after Excitotoxic Retinal Injury: A Study of the Total Population of Retinal Ganglion Cells and Their Distribution in the Chicken Retina[J]. PLoS One, 2016 , 11(9): e0161862.
|
[46] |
Ishii M, Kurachi Y. Muscarinic acetylcholine receptors[J]. Curr Pharm Des, 2006, 12(28): 3573-3581.
|
[47] |
Chen W, Chen L, Chen Z, et al. Influence of the Water-Drinking Test on Intraocular Pressure, Schlemm's Canal, and Autonomic Nervous System Activity[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3232-3238.
|
[48] |
Mitchelson F. Muscarinic receptor agonists and antagonists: effects on ocular function[J]. Handb Exp Pharmacol, 2012, 208: 263-298.
|
[49] |
Chen W, Chen Z, Xiang Y, et al. Simultaneous influence of sympathetic autonomic stress on Schlemm's canal, intraocular pressure and ocular circulation[J]. Sci Rep, 2019, 9(1): 20060.
|
[50] |
Johnson M, McLaren JW, Overby DR. Unconventional aqueous humor outflow: A review[J]. Exp Eye Res, 2017, 158: 94-111.
|
[51] |
Kiel JW, Hollingsworth M, Rao R, et al. Ciliary blood flow and aqueous humor production[J]. Prog Retin Eye Res, 2011, 30(1): 1-17.
|
[52] |
Michelson G, Groh MJ. Dipivefrin reduces blood flow in the ciliary body in humans[J]. Ophthalmology, 1994, 101(4): 659-664.
|
[53] |
Uusitalo H, Lehtosalo JI, Palkama A. Vasoactive intestinal polypeptide-immunoreactive nerve fibers in the anterior uvea of the guinea pig[J]. Ophthalmic Res, 1985, 17(4): 235-240.
|
[54] |
Stone RA, Tervo T, Tervo K, et al. Vasoactive intestinal polypeptide-like immunoreactive nerves to the human eye[J]. Acta Ophthalmol (Copenh), 1986, 64(1): 12-18.
|
[55] |
Huang J, Wen D, Wang Q, et al. Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-analysis[J]. Ophthalmology, 2016, 123(4): 697-708.
|
[56] |
Wei S, Li SM, An W, et al. Safety and Efficacy of Low-Dose Atropine Eyedrops for the Treatment of Myopia Progression in Chinese Children: A Randomized Clinical Trial[J]. JAMA Ophthalmol, 2020, 138(11): 1178-1184.
|
[57] |
许多,刘明明,杨红,等. 视觉功能训练联合托吡卡胺滴眼液治疗假性近视眼的临床疗效观察[J].现代生物医学进展,2020,20(19): 3673-3677.
|
[58] |
秦晶晶,王紫艺,范丽英. 视觉训练对伴调节不足的青少年的近视眼防控效果[J].中国实用医药,2020,15(31): 196-198.
|