切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2020, Vol. 10 ›› Issue (06) : 374 -379. doi: 10.3877/cma.j.issn.2095-2007.2020.06.010

综述

人工智能在视网膜疾病中应用的研究现状与展望
王诗惠1, 郝晓凤2, 谢立科2,()   
  1. 1. 100040 北京,中国中医科学院眼科医院2019级博士研究生
    2. 100040 北京,中国中医科学院眼科医院眼底病与眼外伤专科
  • 收稿日期:2020-07-14 出版日期:2020-12-28
  • 通信作者: 谢立科
  • 基金资助:
    国家自然科学基金青年基金项目(81603666); 北京市首都特色基金重点项目(Z181100001718183); 北京市自然科学基金项目(7192235)

Research status and prospects of application of artificial intelligence in retinal diseases

Shihui Wang1, Xiaofeng Hao2, Like Xie2,()   

  1. 1. PhD′s degree 2019, Eye Hospital of China Academy of Chinese Medical Sciences, Beijing 100040, China
    2. Department of Ocular Fundus Disease and Ocular Trauma, Eye Hospital of China Academy of Chinese Medical Sciences, Beijing 100040, China
  • Received:2020-07-14 Published:2020-12-28
  • Corresponding author: Like Xie
引用本文:

王诗惠, 郝晓凤, 谢立科. 人工智能在视网膜疾病中应用的研究现状与展望[J]. 中华眼科医学杂志(电子版), 2020, 10(06): 374-379.

Shihui Wang, Xiaofeng Hao, Like Xie. Research status and prospects of application of artificial intelligence in retinal diseases[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2020, 10(06): 374-379.

常见视网膜疾病的诊断和疗效判定多基于眼底图像,这适用于采用信息化技术进行数据挖掘,尤其适合需要大量数据进行算法训练的人工智能深度学习(AIDL)技术。基于深度学习(DL)技术的医学图像分析技术在视网膜疾病中表现突出。近年来,生成式对抗网络在高质量且高精度光学相干断层扫描(OCT)图像中的应用表现出非凡的潜力。利用人工智能(AI)技术或将有望在常见视网膜疾病中实现诊断、疗效判定、预后及治疗方案的选择等关键的临床步骤。本文中笔者围绕AI技术在视网膜疾病中的应用现状进行综述,旨在推动AI在视网膜疾病诊断与治疗中的应用。

The population of retinal diseases is huge, and diagnosis and efficacy judgment of retinal diseases are mostly based on fundus images. It is suitable for data mining using information technology, especially for deep learning (DL) that requires large amounts of data for algorithm training. DL-based medical image analysis technology is outstanding in retinal diseases. Recently, domestic studies have shown that generative adversarial network (GAN) has potential of generating high-quality, high-precision optical coherence tomography image. The use of artificial intelligence (AI) technology may be expected to achieve clinical key steps such as diagnosis, efficacy judgment and prediction, and even treatment options in common retinal diseases. This article focuses on the current application of AI technology in the field of retinal diseases, and aims to discuss the current status and future development of AI applications in the diagnosis and treatment of retinal diseases.

[1]
Wallis C. How artificial intelligence will change medicine[J]. Nature, 2019, 576(7787): S48.
[2]
Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology[J]. British Journal of Ophthalmology, 2019, 103(2): 167-175.
[3]
Savoy M. Diagnostic tests what physicians need to know IDx-DR for diabetic retinopathy screening margot savoy[J]. American Family Physician, 2020, 101(5): 307-308.
[4]
Liu Y, Yang J, Zhou Y, et al. Prediction of OCT images of short-term response to anti-VEGF treatment for neovascular age-related macular degeneration using generative adversarial network[J]. British Journal of Ophthalmology, 2020: e315338.
[5]
Wood EH, Korot E, Storey PP, et al. The retina revolution: signaling pathway therapies, genetic therapies, mitochondrial therapies, artificial intelligence[J]. Current Opinion in Ophthalmology, 2020, 31(3): 207-214.
[6]
De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[M]. New York: Nature Publishing Group, 2018: 1342.
[7]
Moccia S, De Momi E, El Hadji S, et al. Blood vessel segmentation algorithms-review of methods, datasets and evaluation metrics[J]. Computer Methods and Programs in Biomedicine, 2018, 158: 71-91.
[8]
Schlegl T, Waldstein SM, Bogunovic H, et al. Fully automated detection and quantification of macular fluid in OCT using deep learning[J]. Ophthalmology, 2018, 125(4): 549-558.
[9]
Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131.
[10]
Shih FY, Patel H. Deep learning classification on optical coherence tomography retina images[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34(8): 59-68.
[11]
Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis[J]. The Lancet Digital Health, 2019, 1(6): e271-e297.
[12]
Pandey SK, Sharma V. Robotics and ophthalmology: Are we there yet?[J]. Indian Journal of Ophthalmology, 2019, 67(7): 988-994.
[13]
Bourcier T, Chammas J, Gaucher D, et al. Robot-assisted simulated strabismus surgery[J]. Translational Vision Science & Technology, 2019, 8(3): e26.
[14]
Edwards TL, Xue K, Meenink HCM, et al. First-in-human study of the safety and viability of intraocular robotic surgery[J]. Nature Biomedical Engineering, 2018, 2(9): 649-656.
[15]
Song P, Du Y, Chan KY, et al. The national and subnational prevalence and burden of age-related macular degeneration in China[J]. Journal of Global Health, 2017, 7(2): e020703.
[16]
National Eye Institute. Age-Related Macular Degeneration (AMD) Data and Statistics[EB/OL].[2020-04-23].

URL    
[17]
Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmology, 2017, 135(11): 1170-1176.
[18]
Gonzalez-Gonzalo C, Sanchez-Gutierrez V, Hernandez-Martinez P, et al. Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and age-related macular degeneration[J]. Acta Ophthalmologica, 2020, 98(4): 368-377.
[19]
Venhuizen FG, Van Ginneken B, Van Asten F, et al. Automated staging of age-related macular degeneration using optical coherence tomography[J]. Investigative Ophthalmology & Visual Science, 2017, 58(4): 2318-2328.
[20]
Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning[J]. Graefes Archive for Clinical and Experimental Ophthalmology, 2018, 256(2): 259-265.
[21]
Sun Z, Sun Y. Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images[J]. Journal of Biomedical Optics, 2019, 24(5): e056003.
[22]
Heo TY, Kim KM, Min HK, et al. Development of a deep-learning-based artificial intelligence tool for differential diagnosis between dry and neovascular age-related macular degeneration[J]. Diagnostics, 2020, 10(5): e261.
[23]
De Sisternes L, Jonna G, Greven MA, et al. Individual drusen segmentation and repeatability and reproducibility of their automated quantification in optical coherence tomography images[J]. Translational Vision Science & Technology, 2017, 6(1): 12.
[24]
Schmidt-Erfurth U, Waldstein SM, Klimscha S, et al. Prediction of individual disease conversion in early AMD using artificial intelligence[J]. Investigative Ophthalmology & Visual Science, 2018, 59(8): 3199-3208.
[25]
Schmidt-Erfurth U, Bogunovic H, Sadeghipour A, et al. Machine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degeneration[J]. Ophthalmology Retina, 2018, 2(1): 24-30.
[26]
Rohm M, Tresp V, Müller M, et al. Predicting visual acuity by using machine learning in patients treated for neovascular age-related macular degeneration[J]. Ophthalmology, 2018, 125(7): 1028-1036.
[27]
Song P, Yu J, Chan KY, et al. Prevalence, risk factors and burden of diabetic retinopathy in China: a systematic review and meta-analysis[J]. Journal of Global Health, 2018, 8(1): e010803.
[28]
Kapoor R, Walters SP, Al-Aswad LA. The current state of artificial intelligence in ophthalmology[J]. Survey of Ophthalmology, 2019, 64(2): 233-240.
[29]
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410.
[30]
FDA. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems[EB/OL]. [2020-08-11].

URL    
[31]
Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning[J]. Ophthalmology, 2017, 124(7): 962-969.
[32]
Takahashi H, Tampo H, Arai Y, et al. Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy[J]. Plos One, 2017, 12(6): e0179790.
[33]
Natarajan S, Jain A, Krishnan R, et al. Diagnostic accuracy of community-based diabetic retinopathy screening with an offline artificial intelligence system on a smartphone[J]. JAMA Ophthalmology, 2019, 137(10): 1182-1188.
[34]
Lahmiri S. Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina[J]. Biomedical Signal Processing and Control, 2020, 60: e101978.
[35]
Gerendas BS, Bogunovic H, Sadeghipour A, et al. Computational image analysis for prognosis determination in DME[J]. Vision Research, 2017, 139: 204-210.
[36]
Musacchio N, Giancaterini A, Guaita G, et al. Artificial intelligence and big data in diabetes care: a position statement of the italian association of medical diabetologists[J]. Journal of Medical Internet Research, 2020, 22(6): e16922.
[37]
Gilbert C, Malik ANJ, Nahar N, et al. Epidemiology of ROP update——Africa is the new frontier[J]. Seminars in Perinatology, 2019, 43(6): 317-322.
[38]
Xiao S, Bucher F, Wu Y, et al. Fully automated, deep learning segmentation of oxygen-induced retinopathy images[J]. JCI insight, 2017, 2(24): e97585.
[39]
Mazzaferri J, Larrivée B, Cakir B, et al. A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model[J]. Scientific Reports, 2018, 8(1): 3916.
[40]
Ataer-Cansizoglu E, Bolon-Canedo V, Campbell JP, et al. Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity: performance of the "i-ROP" System and Image Features Associated With Expert Diagnosis[J]. Translational Vision Science & Technology, 2015, 4(6): e5.
[41]
Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmology, 2018, 136(7): 803-810.
[42]
Rogers S, Mcintosh RL, Cheung N, et al. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia[J]. Ophthalmology, 2010, 117(2): 313-319.
[43]
Nagasato D, Tabuchi H, Ohsugi H, et al. Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion[J]. International Journal of Ophthalmology, 2019, 12(1): 94-99.
[44]
Seebock P, Orlando JI, Schlegl T, et al. Exploiting epistemic uncertainty of anatomy segmentation for anomaly detection in retinal OCT[J]. IEEE Transactions on Medical Imaging, 2020, 39(1): 87-98.
[45]
Vogl WD, Waldstein SM, Gerendas BS, et al. Analyzing and predicting visual acuity outcomes of anti-VEGF therapy by a longitudinal mixed effects model of imaging and clinical data[J]. Investigative Ophthalmology & Visual Science, 2017, 58(10): 4173-4181.
[46]
Vogl WD, Waldstein SM, Gerendas BS, et al. Predicting macular edema recurrence from spatio-temporal signatures in optical coherence tomography images[J]. IEEE Transactions on Medical Imaging, 2017, 36(9): 1773-1783.
[47]
Lu W, Tong Y, Yu Y, et al. Applications of artificial intelligence in ophthalmology: general overview[J]. Journal of Ophthalmology, 2018:5278196.
[48]
Samuel AL. Some studies in machine learning using the game of checkers[J]. IBM Journal of Research and Development, 1959, 3(3): 210-229.
[49]
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[50]
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Advances in neural information processing systems 27[M]. New York: Curran Associates, Inc., 2014.
[51]
Ko F, Foster PJ, Strouthidis NG, et al. Associations with retinal pigment epithelium thickness measures in a large cohort: results from the UK Biobank[J]. Ophthalmology, 2017, 124(1): 105-117.
[52]
Keane PA, Grossi CM, Foster PJ, et al. Optical coherence tomography in the UK biobank study-rapid automated analysis of retinal thickness for large population-based studies[J]. PloS One, 2016, 11(10): e0164095.
[53]
Baylor E, Beede E, Hersch F, et al. A Human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy[C]. Honolulu, HI, USA: Human Factors in Computing Systems (CHI′20), 2020: 1-12.
[54]
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina[J]. Progress in Retinal and Eye Research, 2018, 67: 1-29.
[55]
Balthazar P, Harri P, Prater A, et al. Protecting your patients′ interests in the era of big data, artificial intelligence, and predictive analytics[J]. Journal of the American College of Radiology, 2018, 15(3 Pt B): 580-586.
[56]
Freedman DH. Hunting for new drugs with AI[J]. Nature, 2019, 576(7787): S49-S53.
[57]
Wolk S, Kleemann M, Reeps C. Artificial intelligence in vascular surgery and vascular medicine[J]. Chirurg, 2020, 91(3): 195-200.
[58]
中共中央国务院. "健康中国2030"规划纲要[EB/OL].[2020-08-11].

URL    
[59]
Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare[J]. Nature Medicine, 2019, 25(1): 24-29.
[60]
Heidary F, Gharebaghi R. Ideas to assist the underprivileged dispossessed individuals[J]. Medical Hypothesis, 2012, 1(3): 43-44.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 林文, 王雨萱, 许嘉悦, 王矜群, 王睿娜, 何董源, 樊沛. 人工关节置换登记系统的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 834-841.
[4] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[5] 李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.
[6] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[7] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[8] 胡博文, 戴英波. 泌尿外科机器人手术新趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 418-421.
[9] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[10] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[11] 邢晓伟, 刘雨辰, 王明刚. 人工智能技术在疝和腹壁外科领域的应用及展望[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 390-393.
[12] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[13] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[14] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要