切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (03) : 160 -165. doi: 10.3877/cma.j.issn.2095-2007.2019.03.006

论著

一个X连锁显性遗传Nance-Horan综合征家系致病突变的遗传学研究
李心如1, 孟晓露2, 司锘2, 宋籽浔1, 肖伟1,()   
  1. 1. 110004 沈阳,中国医科大学附属盛京医院眼科
    2. 100005 北京,中国医学科学院基础医学研究所 北京协和医学院基础学院 医学分子生物学国家重点实验室 麦库西克-张孝骞协和遗传医学中心
  • 收稿日期:2018-12-21 出版日期:2019-06-28
  • 通信作者: 肖伟
  • 基金资助:
    国家自然科学基金(81741074); 辽宁省教育厅科学研究项目(L:2015593)

Pathogenic mutation in a family with X-linked dominant Nance-Horan syndrome

Xinru Li1, Xiaolu Meng2, Nuo Si2, Zixun Song1, Wei Xiao1,()   

  1. 1. Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang 110004, China
    2. McKusick-Zhang Center for Genetic Medicine, Key State Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
  • Received:2018-12-21 Published:2019-06-28
  • Corresponding author: Wei Xiao
引用本文:

李心如, 孟晓露, 司锘, 宋籽浔, 肖伟. 一个X连锁显性遗传Nance-Horan综合征家系致病突变的遗传学研究[J]. 中华眼科医学杂志(电子版), 2019, 09(03): 160-165.

Xinru Li, Xiaolu Meng, Nuo Si, Zixun Song, Wei Xiao. Pathogenic mutation in a family with X-linked dominant Nance-Horan syndrome[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(03): 160-165.

目的

对中国东北辽宁地区一个三代后极性先天性白内障合并小眼球小角膜家系进行致病变异筛查,为临床明确诊断及遗传咨询提供必要的遗传学依据。

方法

2017年4月采集该家系中2例患者和1例正常对照者的外周静脉血,提取基因组脱氧核糖核酸,对先证者进行眼部检查。通过MiSeq测序平台对4813个临床疾病相关基因进行高通量测序,寻找致病变异位点。

结果

该家系表现为后极性先天性白内障伴有小眼球小角膜,呈X连锁显性遗传。对家系中3个成员基因组脱氧核糖核酸进行测序,发现家系内患者携带X染色体NHS基因无义突变(NHS c.742C>T,p.R248*),该突变在家系中与疾病表型共分离。通过查询人类基因突变数据库,该突变为Nance-Horan综合征致病突变,患者临床表现与该综合征相符。

结论

该家系诊断为Nance-Horan综合征,NHS基因c.742C>T(p.R248*)突变是该家系的致病变异。

Objective

The aim of this study was to screen the pathogenic mutation of three generation post polar congenital cataract with small eyeball and small cornea, and provide necessary genetic evidence for clinical diagnosis and genetic counseling.

Methods

In April 2017, Peripheral venous blood from 2 patients and a normal control case was collected; genomic deoxyribonucleic acid was extracted, and the ocular examination was done for proband. The 4813 clinical disease related genes were sequenced by high throughput sequencing based on MiSeq sequencing platform for seeking the pathogenic mutation.

Results

The family was characterized by posterior polar congenital cataract with small eyeball and small cornea, which was X dominant inheritance. The genomic deoxyribonucleic acid of 3 members of the family was sequenced, and the patients were found to carry the NHS gene non sense mutation (NHS c. 742C>T, p. R248*) on the chromosome X, which was co-separated with the disease phenotype in the family. After comparing with Human Gene Mutation Database, the mutation is pathogenic for Nance-Horan syndrome which were consistent with the clinical manifestations of the patients.

Conclusions

The family is diagnosed as Nance-Horan syndrome, and the mutation of NHS gene c. 742C>T (p.R248*) is the pathogenic variation of this family.

图1 该家系患者表型、系谱及NHS基因突变位点的Sanger验证结果图 图A示NHS基因突变位点的Sanger验证结果图,上侧为家系内未患病者,下侧为患病者;图B示先证者Ⅲ1的眼部表型,表现为后极性白内障;图C示患者Ⅰ2的面部表型,表现为牙齿异常;图D示患者Ⅱ2的面部表型,表现为脸型较长;图E示该先天性白内障家系系谱图
表1 中国家系中报道的NHS基因突变
[1]
Reddy MA, Francis PJ, Berry V, et al. Molecular genetic basis of inherited cataract and associated phenotypes[J]. Surv Ophthalmol, 2004, 49(3): 300-315.
[2]
Wang DD, Yang HJ, Yi JL, et al. Research progress in relative crystallin genes of congenital cataract[J]. Zhonghua Yan Ke Za Zhi, 2016, 52(2): 141-149.
[3]
Aughton DJ, Kelley RI, Metzenberg A, et al. X-linked dominant chondrodysplasia punctata (CDPX2) caused by single gene mosaicism in a male[J]. Am J Med Genet A, 2003, 116A(3): 255-260.
[4]
Arnold AW, Bruckner-Tuderman L, Has C, et al. Conradi-Hünermann-Happle syndrome in males vs. MEND syndrome (male EBP disorder with neurological defects)[J]. Br J Dermatol, 2012, 166(6): 1309-1313.
[5]
Gropman A, Levin S, Yao L, et al. Unusual renal features of Lowe syndrome in a mildly affected boy[J]. Am J Med Genet, 2000, 95(5): 461-466.
[6]
Obwegeser HL, Gorlin RJ. Oculo-facio-cardio-dental (OFCD) syndrome[J]. Clin Dysmorphol, 1997, 6(3): 281-283.
[7]
Segal Y, Peissel B, Renieri A, et al. LINE-1 elements at the sites of molecular rearrangements in Alport syndrome-diffuse leiomyomatosis[J]. Am J Hum Genet, 1999, 64(1): 62-69.
[8]
Nance WE, Warburg M, Bixler D, et al. Congenital X-linked cataract, dental anomalies and brachymetacarpalia[J]. Birth Defects Orig Artic Ser, 1974, 10(4): 285-291.
[9]
Horan MB, Billson FA. X-linked cataract and hutchinsonian teeth[J]. J Paediatr Child H, 1974, 10(2): 98-102.
[10]
Burdon KP, McKay JD, Sale MM, et al. Mutations in a novel gene, NHS, cause the pleiotropic effects of Nance-Horan syndrome, including severe congenital cataract, dental anomalies, and mental retardation[J]. Am J Hum Genet, 2003, 73(5): 1120-1130.
[11]
李杨. 遗传性眼病致病基因突变分析中应重视临床表型的评估[J]. 中华实验眼科杂志201735(8):673-676.
[12]
Chograni M, Rejeb I, Jemaa LB, et al. The first missense mutation of NHS gene in a Tunisian family with clinical features of NHS syndrome including cardiac anomaly[J]. Eur J Hum Genet, 2011, 19(8): 851-856.
[13]
周雪莹,于志强. 全基因组外显子测序在眼科遗传病中的应用[J]. 中华眼科杂志201551(5):395-400.
[14]
孙亦挺,张娣,赵泽毅,等. 第二代测序在肿瘤临床研究中的应用[J]. 精准医学杂志201833(1):81-85.
[15]
Shendure J, Porreca GJ, Reppas NB, et al. Accurate multiplex polony sequencing of an evolved bacterial genome[J]. Science, 2005, 309(5741): 1728-1732.
[16]
Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40: past, present and future[J]. Nature, 2017, 550(7676): 345-353.
[17]
周莹,许冰莹. 二代测序技术在临床医学上的相关应用[J]. 昆明医科大学学报2016, 37(3):137-139.
[18]
Rothberg JM, Leamon JH. The development and impact of 454 sequencing[J]. Nat Biotechnol, 2008, 26(10): 1117-1124.
[19]
Johnson JA. Pharmacogenetics: potential for individualized drug therapy through genetics[J]. Trends Genet, 2003, 19(11): 660-666.
[20]
Ameur A, Kloosterman WP, Hestand MS. Single-molecule sequencing: Towards clinical applications[J]. Trends Biotechnol, 2019, 37(1): 72-85.
[21]
Tug E, Dilek NF, Javadiyan S, et al. A Turkish family with Nance-Horan Syndrome due to a novel mutation[J]. Gene, 2013, 525(1): 141-145.
[22]
Ling C, Sui R, Yao F, et al. Whole exome sequencing identified a novel truncation mutation in the NHS gene associated with Nance-Horan syndrome[J]. BMC Med Genet, 2019, 20(1): 14.
[23]
Ramprasad VL, Thool A, Murugan S, et al. Truncating mutation in the NHS gene: phenotypic heterogeneity of Nance-Horan syndrome in an asian Indian family[J]. Invest Ophthalmol Vis Sci, 2005, 46(1): 17-23.
[24]
Coccia M, Brooks SP, Webb TR, et al. X-linked cataract and Nance-Horan syndrome are allelic disorders[J]. Hum Mol Genet, 2009, 18(14): 2643-2655.
[25]
Li A, Li B, Wu L, et al. Identification of a novel NHS mutation in a Chinese family with Nance-Horan syndrome[J]. Curr Eye Res, 2015, 40(4): 434-438.
[26]
Liao HM, Niu DM, Chen YJ, et al. Identification of a microdeletion at Xp22.13 in a Taiwanese family presenting with Nance-Horan syndrome[J]. J Hum Genet, 2011, 56(1): 8-11.
[27]
Florijn RJ, Loves W, Maillette de Buy Wenniger-Prick LJ, et al. New mutations in the NHS gene in Nance-Horan Syndrome families from the Netherlands[J]. Eur J Hum Genet, 2006, 14(9): 986-990.
[28]
Li H, Yang L, Sun Z, et al. A novel small deletion in the NHS gene associated with Nance-Horan syndrome[J]. Sci Rep, 2018, 8(1): 2398.
[29]
Shoshany N, Avni I, Morad Y, et al. NHS gene mutations in Ashkenazi Jewish families with Nance-Horan syndrome[J]. Curr Eye Res, 2017, 42(9): 1240-1244.
[30]
Ding X, Patel M, Herzlich AA, et al. Ophthalmic pathology of Nance-Horan syndrome: case report and review of the literature[J]. Ophthalmic Genet, 2009, 30(3): 127-135.
[31]
Toutain A, Ayrault AD, Moraine C. Mental retardation in Nance-Horan syndrome: clinical and neuropsychological assessment in four families[J]. Am J Med Genet, 1997, 71(3): 305-314.
[32]
洪楠. Nance-Horan综合征家系致病基因突变定位及功能研究[D]. 杭州:浙江大学,2015.
[33]
Sharma S, Burdon KP, Dave A, et al. Novel causative mutations in patients with Nance-Horan syndrome and altered localization of the mutant NHS-A protein isoform[J]. Mol Vis, 2008, 14: 1856-1864.
[34]
Gjørup H, Haubek D, Jacobsen P, et al. Nance-Horan syndrome——The oral perspective on a rare disease[J]. Am J Med Genet A, 2017, 173(1): 88-98.
[35]
Brooks SP, Coccia M, Tang HR, et al. The Nance-Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology[J]. Hum Mol Genet, 2010, 19(12): 2421-2432.
[36]
Fieremans N, Van Esch H, Holvoet M, et al. Identification of intellectual disability genes in female patients with a skewed X-inactivation pattern[J]. Hum Mutat, 2016, 37(8): 804-811.
[37]
Abouelhoda M, Faquih T, El-Kalioby M, et al. Revisiting the morbid genome of Mendelian disorders[J]. Genome Biol, 2016, 17(1): 235.
[38]
Gillespie RL, O′Sullivan J, Ashworth J, et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing[J]. Ophthalmology, 2014, 121(11): 2124-2137.
[39]
Mathys R, Deconinck H, Keymolen K, et al. Severe visual impairment and retinal changes in a boy with a deletion of the gene for Nance-Horan syndrome[J]. Bull Soc Belge Ophtalmol, 2007, 305(305): 49-53.
[40]
Xiong HY, Alipanahi B, Lee LJ, et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease[J]. Science, 2015, 347(6218): 1254806.
[41]
Gómez-Laguna L, Martínez-Herrera A, Reyes-de la Rosa ADP, et al. Nance-Horan syndrome in females due to a balanced X;1 translocation that disrupts the NHS gene: Familial case report and review of the literature[J]. Ophthalmic Genet, 2018, 39(1): 56-62.
[42]
Hong N, Chen YH, Xie C, et al. Identification of a novel mutation in a Chinese family with Nance-Horan syndrome by whole exome sequencing[J]. J Zhejiang Univ Sci B, 2014, 15(8): 727-734.
[43]
Sun W, Xiao X, Li S, et al. Exome sequencing of 18 Chinese families with congenital cataracts: a new sight of the NHS gene[J]. PLoS One, 2014, 9(6): e100455.
[44]
Tian Q, Li Y, Kousar R, et al. A novel NHS mutation causes Nance-Horan Syndrome in a Chinese family[J]. BMC Med Genet, 2017, 18(1): 2.
[45]
Li D, Wang S, Ye H, et al. Distribution of gene mutations in sporadic congenital cataract in a Han Chinese population[J]. Mol Vis, 2016, 22: 589-598.
[1] 彭雨诗, 苗芸, 严紫嫣. 宏基因组高通量测序诊断肾移植术后华支睾吸虫感染一例[J]. 中华移植杂志(电子版), 2023, 17(05): 297-299.
[2] 肖敏, 杨松, 陈杨, 李同心, 杨仕明, 林辉. 结核病患者中靶向调控维生素D受体的microRNA的初步筛选[J]. 中华肺部疾病杂志(电子版), 2020, 13(06): 731-736.
[3] 王玉柳明, 张巍远, 张宇坤, 胡汉卿, 黄睿, 汤庆超, 陈瑛罡, 王贵玉. 利用高通量测序技术探究肠球菌属在Ⅲ期与Ⅳ期结肠癌患者间的丰度差异[J]. 中华结直肠疾病电子杂志, 2020, 09(02): 150-156.
[4] 洪权. 高通量测序在慢性肾脏病诊治中应用[J]. 中华肾病研究电子杂志, 2020, 09(04): 192-192.
[5] 李鸥, 徐华, 马倩, 王旭, 尹忠, 吴玲玲, 谢院生, 蔡广研, 陈香美, 洪权. 利用ChIP-seq/SILAC技术筛选KLF15的靶向基因SUMO1[J]. 中华肾病研究电子杂志, 2018, 07(02): 74-81.
[6] 王彩月, 王立锋, 伍建. 遗传性疾病致病基因检测报告的解读[J]. 中华肾病研究电子杂志, 2017, 06(01): 9-13.
[7] 许皓月, 董魁, 姬璇, 康志明, 李俊红. 婴幼儿和儿童眼部菌群对眼部健康状态的影响[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 114-118.
[8] 许娜娜, 周敏, 尹梅, 崔毅, 李琛, 陈晓梅, 丁士芳, 翟茜, 吴大玮, 王昊. 高通量测序技术在脓毒症病原微生物检测中的价值[J]. 中华重症医学电子杂志, 2019, 05(02): 199-202.
[9] 杨翠萍, 杨晓金, 李婷, 吴云林, 陈平, 张惟郁. 舒林酸联合双歧杆菌三联活菌治疗家族性腺瘤性息肉病的作用及其机制初探[J]. 中华消化病与影像杂志(电子版), 2022, 12(05): 286-290.
[10] 陈钟玉, 井水. 高通量测序技术在稽留流产孕妇绒毛染色体异常观察中的价值及其发病的影响因素分析[J]. 中华临床医师杂志(电子版), 2021, 15(12): 1003-1008.
[11] 卢建, 梁杰, 袁腾龙, 黄伟伟, 何天文, 陈创奇, 董云巧, 尹爱华. 拷贝数变异测序在染色体易位夫妇植入前遗传学诊断中的临床应用[J]. 中华产科急救电子杂志, 2019, 08(03): 174-178.
[12] 鲍芸, 肖艳群, 王华梁. 高通量测序技术在五类疾病分子诊断中的应用及质量管理策略[J]. 中华临床实验室管理电子杂志, 2018, 06(02): 69-73.
[13] 王旭东, 鞠少卿. 新一代测序技术在肿瘤精准医学中的应用[J]. 中华临床实验室管理电子杂志, 2015, 03(03): 139-145.
阅读次数
全文


摘要