[1] |
Liao S, Qu Z, Li L, et al. HSF4 transcriptional regulates HMOX-1 expression in HLECs[J]. Gene, 2018, 655: 30-34.
|
[2] |
Tanabe M, Sasai N, Nagata K, et al. The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing[J]. J Biol Chem, 1999, 274(39): 27845-27856.
|
[3] |
Min JN, Zhang Y, Moskophidis D, et al. Unique contribution of heat shock transcription factor 4 in ocular lens development and fiber cell differentiation[J]. Genesis, 2004, 40(4): 205-217.
|
[4] |
Enoki Y, Mukoda Y, Furutani C, et al. DNA-binding and transcriptional activities of human HSF4 containing mutations that associate with congenital and age-related cataracts[J]. Biochim Biophys Acta, 2010, 1802(9): 749-753.
|
[5] |
Sheeladevi S, Lawrenson JG, Fielder AR, et al. Global prevalence of childhood cataract: a systematic review[J]. Eye (Lond), 2016, 30(9): 1160-1169.
|
[6] |
Shiels A, , Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts[J]. Exp Eye Res, 2017, 156: 95-102.
|
[7] |
Pichi F, Lembo A, Serafino M, et al. Genetics of Congenital Cataract[J]. Dev Ophthalmol, 2016, 57: 1-14.
|
[8] |
Shiels A, Bennett TM, Hejtmancik JF. Cat-Map: putting cataract on the map[J]. Mol Vis 2010, 16: 2007-2015.
|
[9] |
Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation[J]. Genome Res, 1998, 8(12): 1229-1231.
|
[10] |
Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation[J]. Nucleic Acids Res, 2001, 29(1): 308-311.
|
[11] |
Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence[J]. Nucleic Acids Res, 2018, 46(D1): D1062-D1067.
|
[12] |
Stenson PD, Mort M, Ball EV, et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies[J]. Hum Genet, 2017, 136(6): 665-677.
|
[13] |
Pinero J, Bravo A, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants[J]. Nucleic Acids Res, 2017, 45(D1): D833-D839.
|
[14] |
Pejaver V, Urresti J, Lugo-Martinez J, et al. MutPred2: inferring the molecular and phenotypic impact of amino acid variants [EB/OL]. (2017-05-09)[2019-01-31].
URL
|
[15] |
Tang H, Thomas PD. PANTHER-PSEP: predicting disease-causing genetic variants using position-specific evolutionary preservation[J]. Bioinformatics, 2016, 32(14): 2230-2232.
|
[16] |
Capriotti E, Calabrese R, Casadio R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information[J]. Bioinformatics, 2006, 22(22): 2729-2734.
|
[17] |
Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations[J]. Nat Methods, 2010, 7(4): 248-249.
|
[18] |
Choi Y, Chan AP . PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels[J]. Bioinformatics, 2015, 31(16): 2745-2747.
|
[19] |
Sim NL, Kumar P, Hu J, et al. SIFT web server: predicting effects of amino acid substitutions on proteins[J]. Nucleic Acids Res, 2012, 40: W452-W457.
|
[20] |
Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure[J]. Nucleic Acids Res, 2005, 33:W306-W310.
|
[21] |
Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines[J]. Proteins, 2006, 62(4): 1125-1132.
|
[22] |
Savojardo C, Fariselli P, Martelli PL, et al. INPS-MD: a web server to predict stability of protein variants from sequence and structure[J]. Bioinformatics, 2016, 32(16): 2542-2544.
|
[23] |
Ashkenazy H, Abadi S, Martz E, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules[J]. Nucleic Acids Res, 2016, 44(W1): W344-W350.
|
[24] |
Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments[J]. Comput Appl Biosci, 1995, 11(6): 681-684.
|
[25] |
Venselaar H, Te Beek TA, Kuipers RK, et al. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces[J]. BMC bioinformatics, 2010, 11(1): 548.
|
[26] |
Gilbert C, Foster A. Childhood blindness in the context of VISION 2020——the right to sight[J]. Bull World Health Organ, 2001, 79(3): 227-232.
|
[27] |
Yi J, Yun J, Li ZK, et al. Epidemiology and molecular genetics of congenital cataracts[J]. Int J Ophthalmol, 2011, 4(4): 422-432.
|
[28] |
Hamosh A, Scott AF, Amberger JS, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders[J]. Nucleic Acids Res, 2005, 33: D514-D517.
|
[29] |
Bu L, Jin Y, Shi Y, et al. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract, Nat Genet, 2002, 31(3): 276-278.
|
[30] |
Lv H, Huang C, Zhang J, et al. A novel HSF4 gene mutation causes autosomal-dominant cataracts in a Chinese family[J]. Gene, 2014, 4(5): 823-828.
|
[31] |
Gillespie RL, O′Sullivan J, Ashworth J, et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing[J]. Ophthalmology, 2014, 121(11): 2124-2137.
|
[32] |
Li D, Wang S, Ye H, et al. Distribution of gene mutations in sporadic congenital cataract in a Han Chinese population[J]. Mol Vis, 2016, 22:589-598.
|
[33] |
Cao Z, Zhu Y, Liu L, et al. Novel mutations in HSF4 cause congenital cataracts in Chinese families[J]. BMC Med Genet, 2018, 19(1):150.
|
[34] |
Berry V, Pontikos N, Moore A, et al. A novel missense mutation in HSF4 causes autosomal-dominant congenital lamellar cataract in a British family[J]. Eye, 2018, 32(4): 806-812.
|
[35] |
Ke T, Wang QK, Ji B, et al. Novel HSF4 mutation causes congenital total white cataract in a Chinese family[J]. Am J Ophthalmol, 2006, 142(2): 298-303.
|
[36] |
Liu L, Zhang Q, Zhou LX, et al. A novel HSF4 mutation in a Chinese family with autosomal dominant congenital cataract[J]. J Huazhong Univ Sci Technolog Med Sci, 2015, 35(2): 316-318.
|
[37] |
Hansen L, Mikkelsen A, Nürnberg P, et al. Comprehensive mutational screening in a cohort of Danish families with hereditary congenital cataract[J]. Invest Ophthalmol Vis Sci, 2009, 50(7): 3291-3303.
|
[38] |
Behnam M, Imagawa E, Chaleshtori AR, et al. A novel homozygous mutation in HSF4 causing autosomal recessive congenital cataract[J]. J Hum Genet, 2016, 61(2): 177-179.
|
[39] |
Forshew T, Johnson CA, Khaliq S, et al. Locus heterogeneity in autosomal recessive congenital cataracts: linkage to 9q and germline HSF4 mutations[J]. Hum Genet, 2005, 117(5): 452-459.
|
[40] |
Khan S, Vihinen M. Performance of protein stability predictors[J]. Hum Mutat, 2010, 31(6): 675-684.
|
[41] |
马汝海,钟连声,王天骄,等. 转录因子HSF4的生物信息学分析[J]. 生命科学研究,2016, 20(6):475-479.
|