切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 56 -60. doi: 10.3877/cma.j.issn.2095-2007.2019.01.009

综述

干燥综合征与肠道菌群相关性研究进展
刘雨诗1, 江晓丹1, 郝然1, 李学民1,()   
  1. 1. 100191 北京大学第三医院眼科
  • 收稿日期:2019-01-26 出版日期:2019-02-28
  • 通信作者: 李学民
  • 基金资助:
    首都卫生发展科研专项项目(首发2018-2-4093)

Research progress of relation between Sjögren's syndrome and gut microbiota

Yushi Liu1, Xiaodan Jiang1, Ran Hao1, Xuemin Li1,()   

  1. 1. Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
  • Received:2019-01-26 Published:2019-02-28
  • Corresponding author: Xuemin Li
引用本文:

刘雨诗, 江晓丹, 郝然, 李学民. 干燥综合征与肠道菌群相关性研究进展[J]. 中华眼科医学杂志(电子版), 2019, 09(01): 56-60.

Yushi Liu, Xiaodan Jiang, Ran Hao, Xuemin Li. Research progress of relation between Sjögren's syndrome and gut microbiota[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(01): 56-60.

肠道菌群在人体免疫系统中发挥着重要作用,肠道菌群及其代谢物的异常与一系列免疫性疾病密切相关。干燥综合征作为自身免疫性疾病的一种,其发病可能与多种因素相关。近年来的一系列研究提示肠道菌群通过调节肠道局部与全身免疫反应,会对干燥综合征的发生与发展产生重要影响。本文中笔者对干燥综合征患者的肠道菌群改变、肠道菌群对干燥综合征的影响及二者可能的免疫学联系进行阐述。

The gut microbiota plays a critical role in the human immune system, and abnormalities of the intestinal flora and its metabolites are closely related to a series of systemic autoimmune diseases. Sj?gren's syndrome is one of the most common autoimmune disease whose onset may be relevant to a variety of factors. Over the recent years, emerging studies are suggesting that gut microbiota may be correlated with the occurrence or development of Sj?gren's syndrome, through profoundly affecting the local and systemic immune responses. This review describes the gut microbiota changes in patients with Sj?gren's syndrome, as well as itseffects on the disease and the possible immunological pathogenesis.

[1]
Zhong D, Wu C, Zeng X, et al. The role of gut microbiota in the pathogenesis of rheumatic diseases [J]. Clin Rheumatol, 2018, 37(1): 25-34.
[2]
Clemente JC, Manasson J, Scher JU. The role of the gut microbiome in systemic inflammatory disease [J]. Bmj, 2018, 360: j5145.
[3]
Fox RI. Sjogren's syndrome [J]. Lancet, 2005, 366(9482): 321-331.
[4]
中华医学会风湿病学分会. 干燥综合征诊断及治疗指南[J]. 中华风湿病学杂志2010, 14(11): 766-768.
[5]
Vivino FB. Sjogren's syndrome: Clinical aspects [J]. Clin Immunol, 2017, 182: 48-54.
[6]
Kuklinski E, Asbell PA. Sjogren's syndrome from the perspective of ophthalmology [J]. Clin Immunol, 2017, 182: 55-61.
[7]
Tapinos NI, Polihronis M, Tzioufas AG, et al. Sjogren's syndrome Autoimmune epithelitis [J]. Adv Exp Med Biol, 1999, 455: 127-134.
[8]
Goules AV, Kapsogeorgou EK, Tzioufas AG. Insight into pathogenesis of sjogren's syndrome: dissection on autoimmune infiltrates and epithelial cells [J]. Clin Immunol, 2017, 182: 30-40.
[9]
Takeda K, Kaisho T, Akira S. Toll-like receptors [J]. Annu Rev Immunol, 2003, 21: 335-376.
[10]
Jonsson R, Gordon TP, Konttinen YT. Recent advances in understanding molecular mechanisms in the pathogenesis and antibody profile of Sjogren's syndrome [J]. Curr Rheumatol Rep, 2003, 5(4): 311-316.
[11]
Sawalha AH, Potts R, Schmid WR, et al. The genetics of primary Sjogren's syndrome [J]. Curr Rheumatol Rep, 2003, 5(4): 324-332.
[12]
Tzioufas AG, Kapsogeorgou EK, Manoussakis MN, et al. Pathogenetic aspects of primary sjögren's syndrome[M]. London: Springer, 2011: 33-53.
[13]
Kverka M, Tlaskalova-Hogenova H. Intestinal microbiota: facts and fiction [J]. Dig Dis, 2017, 35(1-2): 139-147.
[14]
Rajilic-Stojanovic M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota [J]. FEMS Microbiol Rev, 2014, 38(5): 996-1047.
[15]
Koboziev I, Reinoso WC, Furr KL, et al. Role of the enteric microbiota in intestinal homeostasis and inflammation [J]. Free Radic Biol Med, 2014, 68: 122-133.
[16]
Clooney AG, Fouhy F, Sleator RD, et al. Comparing apples and oranges? next generation sequencing and Its Impact on microbiome analysis [J]. PLoS One, 2016, 11(2): e0148028.
[17]
Bouskra D, Brezillon C, Berard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis [J]. Nature, 2008, 456(7221): 507-510.
[18]
Moreau MC, Corthier G. Effect of the gastrointestinal microflora on induction and maintenance of oral tolerance to ovalbumin in C3H/HeJ mice [J]. Infect Immun, 1988, 56(10): 2766-2768.
[19]
Pabst O, Herbrand H, Friedrichsen M, et al. Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling [J]. J Immunol, 2006, 177(10): 6824-6832.
[20]
Ivanov, I, Frutos Rde L, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine [J]. Cell Host Microbe, 2008, 4(4): 337-349.
[21]
Ivanov, I, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria [J]. Cell, 2009, 139(3): 485-498.
[22]
Geuking MB, Cahenzli J, Lawson MA, et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses [J]. Immunity, 2011, 34(5): 794-806.
[23]
Fagarasan S, Kawamoto S, Kanagawa O, et al. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis [J]. Annu Rev Immunol, 2010, 28: 243-273.
[24]
Peterson DA, Mcnulty NP, Guruge JL, et al. IgA response to symbiotic bacteria as a mediator of gut homeostasis [J]. Cell Host Microbe, 2007, 2(5): 328-339.
[25]
Mora JR, Iwata M, Eksteen B, et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells [J]. Science, 2006, 314(5802): 1157-1160.
[26]
Sonnenberg GF, Artis D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease [J]. Immunity, 2012, 37(4): 601-610.
[27]
Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate [J]. Nature, 2011, 469(7331): 543-547.
[28]
Petersson J, Schreiber O, Hansson GC, et al. Importance and regulation of the colonic mucus barrier in a mouse model of colitis [J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300(2): G327-G333.
[29]
Fagundes CT, Amaral FA, Vieira AT, et al. Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice [J]. J Immunol, 2012, 188(3): 1411-1420.
[30]
Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease [J]. Nat Rev Immunol, 2013, 13(5): 321-335.
[31]
Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system [J]. Science, 2012, 336(6086): 1268-1273.
[32]
Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease [J]. Cell Microbiol, 2014, 16(7): 1024-1033.
[33]
徐凤,张焕容,张兴民,等. 不同年龄山羊胃肠道乳酸菌的分离鉴定[J]. 黑龙江畜牧兽医2017(3):108-110.
[34]
聂远洋,邓岳,刘戎梅,等. 不同年龄麦洼牦牛肠道菌群的分离鉴定及其群落结构的变化[J]. 中国测试201642(12):53-59.
[35]
黄皓,郝丽,肖向红,等. 肠道菌群功能及检测技术研究进展[J]. 黑龙江畜牧兽医201861(13):48-51.
[36]
郑艺,张家超,张和平. 基于高通量测序技术分析肠道菌群及其影响因素的研究进展[J]. 中国食品学报201414(11):157-164.
[37]
钟海波,伍哓锋,曾瑜,等. 多重耐药鲍曼不动杆菌ERIC-PCR的分子流行病学研究[J]. 现代医院201313(12):19.
[38]
Gnat S, Malek W, Olenska E, et al. Insight into the genomic diversity and relationship of Astragalus glycyphyllos symbionts by RAPD, ERIC-PCR, and AFLP fingerprinting[J]. Journal of Applied Genetics, 2015, 56(4): 551-554.
[39]
Torriani S, Clementi F, Vancanneyt M, et al. Differentiation of Lactobacillus plantarum, L. pentosus and L. paraplantarum species by RAPD-PCR and AFLP[J]. Systematic & Applied Microbiology, 2001, 24(4): 554-558.
[40]
Gueimonde M, Debor L, Tölkkö S, et al. Quantitative assessment of faecal bifidobacterial populations by real-time PCR using lanthanide probes[J]. J Appl Microbiol, 2007, 102(4): 1116-1122.
[41]
Relman DA, Schmidt TM, Macdermott RP, et al. Identification of the uncultured bacillus of Whipple's disease[J]. N Engl J Med, 1992, 327(5): 293-297.
[42]
Romano KA, Dillmcfarland KA, Kasahara K, et al. Fecal Aliquot Straw Technique (FAST) allows for easy and reproducible subsampling: assessing interpersonal variation in trimethylamine-N-oxide (TMAO) accumulation[J]. Microbiome, 2018, 6(1): 91-96.
[43]
Nai C, Meyer V. From axenic to mixed cultures:technological advances accelerating a paradigm shift in microbiology[J]. Trends Microbiol, 2018, 26(6): 538-554.
[44]
庄琪琛,宁芮之,麻远,等. 微流控技术应用于细胞分析的研究进展[J]. 分析化学201644(4):522-532.
[45]
Chiron C, Tompkins TA, Burguière P. Flow cytometry: a versatile technology for specific quantification and viability assessment of microorganisms in multi-strain probiotic products[J].Journal of Applied Microbiology, 2017: 572-584.
[46]
de Paiva CS, Jones DB, Stern ME, et al. Altered mucosal microbiome dversity and disease severity in sjogren syndrome [J]. Sci Rep, 2016, 6: 23561.
[47]
Mandl T, Marsal J, Olsson P, et al. Severe intestinal dysbiosis is prevalent in primary Sjogren's syndrome and is associated with systemic disease activity [J]. Arthritis Res Ther, 2017, 19(1): 237.
[48]
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells [J]. Nature, 2013, 504(7480): 446-450.
[49]
Miquel S, Martin R, Rossi O, et al. Faecalibacterium prausnitzii and human intestinal health [J]. Curr Opin Microbiol, 2013, 16(3): 255-261.
[50]
Sharma R, Zheng L, Guo X, et al. Novel animal models for Sjogren's syndrome: expression and transfer of salivary gland dysfunction from regulatory T cell-deficient mice [J]. J Autoimmun, 2006, 27(4): 289-296.
[51]
Szymula A, Rosenthal J, Szczerba BM, et al. T cell epitope mimicry between sjogren's syndrome antigen A (SSA)/Ro60 and oral, gut, skin and vaginal bacteria [J]. Clin Immunol, 2014, 152(1-2): 1-9.
[52]
Wang C, Zaheer M, Bian F, et al. Sjogren-like lacrimal keratoconjunctivitis in germ-free mice [J]. Int J Mol Sci, 2018, 19(2): 565-569.
[53]
Zaheer M, Wang C, Bian F, et al. Protective role of commensal bacteria in sjogren syndrome [J]. J Autoimmun, 2018, 93: 45-56.
[54]
He B, Hoang TK, Wang T, et al. Resetting microbiota by lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors [J]. J Exp Med, 2017, 214(1): 107-123.
[55]
Waidmann M, Bechtold O, Frick JS, et al. Bacteroides vulgatus protects against escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice [J]. Gastroenterology, 2003, 125(1): 162-177.
[56]
van der Meulen TA, Harmsen H, Bootsma H, et al. The microbiome-systemic diseases connection [J]. Oral Dis, 2016, 22(8): 719-734.
[1] 蒋佳纯, 王晓冰, 陈培荣, 许世豪. 血清学指标联合常规超声及超声造影评分诊断原发性干燥综合征的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 622-630.
[2] 李昌金, 顾昊煜, 白辰光, 胡薇. 以腋窝肿块为主要表现的免疫球蛋白G4相关疾病三例[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 254-257.
[3] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[4] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[5] 乔小梅, 孔凯丽, 方敬爱, 张晓东. "肠-皮肤轴"与尿毒症皮肤病变的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 291-294.
[6] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[7] 郝然, 魏姗珊, 吴倩如, 李学民, 翟长斌. 干燥综合征血清微量元素变化及其与疾病严重程度的相关性研究[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 215-220.
[8] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[9] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[10] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[11] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[12] 王丁然, 迟洪滨. 自身免疫甲状腺炎对子宫内膜异位症患者胚胎移植结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 682-688.
[13] 韩家超, 王飞飞, 柳子宁, 胡冀陶, 孟泽松, 雒月云, 王贵英. 二甲双胍的作用机制研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(03): 349-355.
[14] 杜青瑶, 曹颖雯, 林健雄, 郝润, 王静敏, 徐锐权, 寇晓霞. 肠道菌群促进诺如病毒感染的机制[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 241-244,255.
[15] 金泽平, 董晶, 柳云鹏, 汪阳. 菌群-肠道-脑轴与缺血性卒中危险因素关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 510-517.
阅读次数
全文


摘要