切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2018, Vol. 08 ›› Issue (06) : 241 -248. doi: 10.3877/cma.j.issn.2095-2007.2018.06.001

所属专题: 文献

述评

重视基因突变位点致病性预测软件在眼科领域的应用
王震宇1, 黄琛1, 李学民1,()   
  1. 1. 100191 北京大学第三医院眼科
  • 收稿日期:2018-11-22 出版日期:2018-12-28
  • 通信作者: 李学民
  • 基金资助:
    国家科技重大专项基金(2018ZX10101004)

Pay attention to the application of genetic mutation site pathogenicity prediction software in ophthalmology

Zhenyu Wang1, Chen Huang1, Xuemin Li1,()   

  1. 1. Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
  • Received:2018-11-22 Published:2018-12-28
  • Corresponding author: Xuemin Li
  • About author:
    Corresponding author: Li Xuemin, Email:
引用本文:

王震宇, 黄琛, 李学民. 重视基因突变位点致病性预测软件在眼科领域的应用[J]. 中华眼科医学杂志(电子版), 2018, 08(06): 241-248.

Zhenyu Wang, Chen Huang, Xuemin Li. Pay attention to the application of genetic mutation site pathogenicity prediction software in ophthalmology[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2018, 08(06): 241-248.

随着高通量测序技术的快速发展,大量与疾病致病性相关的基因突变位点被发现,突变位点的致病性预测可以为后续功能分析提供重要的参考。2003年以来,多种用于基因突变位点致病性预测的软件被开发并不断改进,以提高其预测效果和准确性。本文简述了基因测序技术的发展历程及特点,列举了13款单一算法基因突变致病性预测软件和6款带有整合算法的综合预测软件,并通过着重介绍其中4款目前使用频次较高的常用单一算法预测软件有致病/非致病分类算法软件(SIFT)、多态性表型v2软件(PolyPhen-2)、蛋白质变异效应分析软件(PROVEAN)及突变鉴定软件(Mutation Taster)和1款带有整合算法的预测软件,即联合注释相关缺失突变软件(CADD)的运行原理,阐释其在眼科学中的应用,以期为眼科临床工作者合理、有效地选择和使用基因突变位点致病性预测软件提供理论和实践的参考借鉴。

With the rapid development of high-throughput sequencing technology, a large number of gene mutation sites related to disease pathogenesis have been found. Pathogenicity prediction of mutation sites can provide an important reference for follow-up functional analysis. Since 2003, a variety of software for predicting the pathogenicity of gene mutation sites has been developed and continuously improved to improve the predictive effect and accuracy. In this paper, the development and characteristics of gene sequencing technology are briefly described. Thirteen pieces of single algorithm pathogenicity prediction software and six pieces of integrated prediction software with integrated algorithm are listed. Four commonly used single algorithm prediction software (SIFT, PolyPhen-2, PROVEAN and Mutation Taster) and a prediction software with integrated algorithm (CADD) were introduced. Their operation principle and application in ophthalmology are explained in order to provide theoretical and practical reference for ophthalmologists to select and use the software for predicting the pathogenicity of gene mutation sites reasonably and effectively.

表1 单一算法基因突变位点致病性预测软件介绍及比较
软件名称 创建年份 输入序列类型 输出结果种类 参考数据库 优势 劣势
SIFT 2009 NCBI蛋白质ID及单个氨基酸的替换、插入及缺失突变信息 突变预测得分及致病性判断 SWISS-PROT
TREMBL
设计独立致病性预测算法、包含权威数据库分析 可分析突变范围较窄,不包含剪切突变、内含子替换以及跨越内含子-外显子交界的突变
PolyPhen-2 2010 蛋白质名称或氨基酸FASTA格式、单个氨基酸替换信息 突变预测得分及致病性判断;3D结构图;基于机械学习方法的预测分类 UniRef100
SWISS-PROT
设计独立致病性预测算法、权威数据库分析及蛋白质结构功能分析,使用3D结构图直观展示蛋白质结构变异 仅能分析单个氨基酸的替换突变
PROVEAN 2012 NCBI蛋白质ID及单个氨基酸的替换、插入和缺失突变信息 突变预测得分及致病性判断 HGMD
1000 Genomes Project
Uniprot
UniProtKB
Swiss-Prot
设计独立致病性算法、包含权威数据库分析 可分析突变范围较窄,不包含剪切突变、内含子替换以及跨越内含子-外显子交界的突变
Mutation Taster 2014 基因名称(通过GeneSidtiller联想)、单个或多个碱基替换、插入及缺失,内含子替换以及跨越内含子-外显子交界的突变信息 突变预测得分及致病性判断;phastCons和phyloP分数及不同种属 保守性数据来源:
ENCODE project
JASPAR
致病性数据来源:
100 Genomes Project
ClinVar3
HGMD Public
HapMap NNSplice
可分析突变种类广,覆盖的基因序列分析范围包括:单个或多个碱基替换、插入及缺失,内含子替换以及跨越内含子-外显子交界的突变类型;设计保守性预测算法 只检索现有权威数据库的判断,寻找已存在的突变信息
表2 整合算法基因突变位点致病性预测软件介绍
图1 GJA3 c.584C>T的基因突变致病性预测结果图像 A区域为PROVEAN及SIFT预测结果图,该图左侧反映输入突变氨基酸信息,右侧反映两款软件通过各自算法分别得到的PROVEAN分数(本突变为-5.94)及SIFT分数(本突变为0.000),本突变PROVEAN预测结果为有害突变(Deleterious),SIFT预测结果为有害突变(Damaging);B区域为PolyPhen-2预测结果图,上部反映使用HumDiv及HumVar计算得到的分数及预测结果,下部反映不同物种间该突变位点的氨基酸种类;C区域为Mutation Taster预测结果图,反映该软件预测结果及该突变可能导致的具体变异方式;D区域为CADD预测结果图,反映该基因位点可能发生的单核苷酸替换种类及相关的计算得分。
图2 RP1L1 c.661G>A的基因突变致病性预测结果图像 A区域为PROVEAN及SIFT预测结果图,其左侧反映输入突变氨基酸信息,右侧反映两款软件通过各自算法分别得到的PROVEAN分数(本突变为-7.50)及SIFT分数(本突变为0.001),本突变PROVEAN预测结果为有害突变(Deleterious),SIFT预测结果为有害突变(Damaging);B区域为PolyPhen-2预测结果图,上方反映使用HumDiv及HumVar计算得到的分数及预测结果,下方反映不同物种间该突变位点的氨基酸种类;C区域为Mutation Taster预测结果图,反映该软件预测结果及该突变可能导致的具体变异方式;D区域为CADD预测结果图,反映该基因位点可能发生的单核苷酸替换种类及相关的计算得分。
[1]
Maxam AM, Gilbert W. A new method for sequencing DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(2) : 560-564.
[2]
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors[J]. Proc Natl Acad Sci U S A, 1977, 74(12): 5463-5467.
[3]
Sanger F. The terminal peptides of insulin[J]. The Biochemical journal, 1949, 45(5) : 563-574.
[4]
Huang XC, Quesada MA, Mathies RA. DNA sequencing using capillary array electrophoresis[J]. Analytical chemistry, 1992, 64(18) : 2149-2154.
[5]
Smith LM, Fung S, Hunkapiller MW, et al. The synthesis of oligonucleotides containing an aliphatic amino group at the 5' terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis[J].Nucleic acids research, 1985, 13(7) : 2399-2412.
[6]
Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics[J]. Genomics, 2008, 92(5) : 255-264.
[7]
Shendure J, Porreca GJ, Reppas NB, et al. Accurate multiplex polony sequencing of an evolved bacterial genome[J]. Science, 2005, 309(5741) : 1728-1732.
[8]
Shendure J, Ji H. Next-generation DNA sequencing[J]. Nature Biotechnology, 2008, 26(10) : 1135-1145.
[9]
Del Savio L, Loi M, Stupka E. Epigenetics and Future Generations[J]. Bioethics, 2015, 29(8) : 580-587.
[10]
Zannas AS, Provencal N, Binder EB. Epigenetics of Posttraumatic Stress Disorder: Current Evidence, Challenges, and Future Directions[J]. Biological Psychiatry, 2015, 78(5) : 327-335.
[11]
El Shamieh S, Visvikis-Siest S. Genetic biomarkers of hypertension and future challenges integrating epigenomics[J]. Clinica chimica acta, 2012, 414 : 259-265.
[12]
Thomas PD, Campbell MJ, Kejariwal A, et al. PANTHER: a library of protein families and subfamilies indexed by function[J]. Genome research, 2003, 13(9) : 2129-2141.
[13]
Ferrer-Costa C, Gelpl JL, Zamakola L, et al. PMUT: a web-based tool for the annotation of pathological mutations on proteins[J]. Bioinformatics, 2005, 21(14) : 3176-3178.
[14]
Stone EA, Sidow A. Physicochemical constraint violation by missense substitutions mediates impairment of protein function and disease severity[J]. Genome research, 2005, 15(7) : 978-986.
[15]
Cooper GM, Stone EA, Asimenos G, et al. Distribution and intensity of constraint in mammalian genomic sequence[J]. Genome research, 2005, 15(7) : 901-913.
[16]
Bromberg Y, Yachdav G, Rost B. SNAP predicts effect of mutations on protein function[J]. Bioinformatics, 2008, 24(20) : 2397-2398.
[17]
Reva B, Antipin Y, Sander C. Determinants of protein function revealed by combinatorial entropy optimization[J]. Genome Biology, 2007, 8(11) : R232.
[18]
Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics[J]. Nucleic acids research, 2011, 39(17) : e118.
[19]
Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm[J]. Nat Protocols, 2009, 4(7) : 1073-1081.
[20]
Calabrese R, Capriotti E, Fariselli P, et al. Functional annotations improve the predictive score of human disease-related mutations in proteins[J]. Human mutation, 2009, 30(8) : 1237-1244.
[21]
Li B, Krishnan VG, Mort ME, et al. Automated inference of molecular mechanisms of disease from amino acid substitutions[J]. Bioinformatics, 2009, 25(21) : 2744-2750.
[22]
Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations[J]. Nature Methods, 2010, 7(4) : 248-249.
[23]
Choi Y, Sims GE, Murphy S, et al. Predicting the functional effect of amino acid substitutions and indels[J]. PLoS One, 2012, 7(10) : e46688.
[24]
Shihab HA, Gough J, Cooper DN, et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models[J]. Human mutation, 2013, 34(1) : 57-65.
[25]
Schwarz JM, Cooper DN, Schuelke M, et al. MutationTaster2: mutation prediction for the deep-sequencing age[J]. Nature Methods, 2014, 11(4) : 361-362.
[26]
Sunyaev SR, Eisenhaber F, Rodchenkov IV, et al. PSIC: profile extraction from sequence alignments with position-specific counts of independent observations[J]. Protein Engineering, 1999, 12(5) : 387-394.
[27]
Consortium EP. An integrated encyclopedia of DNA elements in the human genome[J]. Nature, 2012, 489(7414) : 57-74.
[28]
Portales-Casamar E, Thongjuea S, Kwon AT, et al. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles[J]. Nucleic acids research, 2010, 38(Database issue) : D105-110.
[29]
Siepel A, Bejerano G, Pedersen JS, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes[J]. Genome research, 2005, (8) : 1034-1050.
[30]
Pollard KS, Hubisz MJ, Rosenbloom KR, et al. Detection of nonneutral substitution rates on mammalian phylogenies[J]. Genome research, 2010, 20(1) : 110-121.
[31]
International HapMap 3 Consortium, Altshuler DM, Gibbs RA, et al. Integrating common and rare genetic variation in diverse human populations[J]. Nature, 2010, 467(7311) : 52-58.
[32]
Reese MG, Eeckman FH, Kulp D, et al. Improved splice site detection in Genie[J]. Journal of computational Biology, 1997, 4(3) : 311-323.
[33]
González-Pérez A, López-Bigas N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel[J]. American journal of human genetics, 2011, 88(4) : 440-449.
[34]
Dong C, Wei P, Jian X, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies[J]. Human molecular genetics, 2015, 24(8) : 2125-2137.
[35]
Frousios K, Iliopoulos CS, Schlitt T, et al. Predicting the functional consequences of non-synonymous DNA sequence variants-evaluation of bioinformatics tools and development of a consensus strategy[J]. Genomics, 2013, 102(4) : 223-228.
[36]
Kircher M, Witten DM, Jain P, et al. A general framework for estimating the relative pathogenicity of human genetic variants[J]. Nature genetics, 2014, 46(3) : 310-315.
[37]
Knecht C, Mort M, Junge O, et al. IMHOTEP-a composite score integrating popular tools for predicting the functional consequences of non-synonymous sequence variants[J]. Nucleic acids research, 2017, 45(3) : e13.
[38]
Lopes MC, Joyce C, Ritchie GR, et al. A combined functional annotation score for non-synonymous variants[J]. Human heredity, 2012, 73(1) : 47-51.
[39]
Zhang MZ, Lv HB, Huang C, et al. Targeted exome sequencing identified a novel GJA3 gene missense mutation causes autosomal dominant congenital cataract in a large Chinese family[J]. International journal of clinical and experimental medicine, 2017, 10(3) : 5143-5151.
[40]
Fujinami K, Kameya S, KikuchiS, et al. Novel RP1L1 Variants and Genotype-Photoreceptor Microstructural Phenotype Associations in Cohort of Japanese Patients With Occult Macular Dystrophy[J]. Investigative ophthalmology & Visual Science, 2016, 57(11) : 4837-4846.
[1] 陈甜甜, 王晓东, 余海燕. 双胎妊娠合并Gitelman综合征孕妇的妊娠结局及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 559-568.
[2] 阚路兰, 田茂强, 唐一蜜. 以腹痛为首发症状的轻型Gitelman综合征患儿1例及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 473-479.
[3] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[4] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[5] 张圣平, 邓琼, 张颖, 张建文, 梁辉, 王铸. 孤儿核受体HNF4α在肾透明细胞癌中的表达及意义[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 627-632.
[6] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[7] 邱静, 黄庆. HJURP在肺腺癌组织中高表达并与患者不良预后相关性[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 495-499.
[8] 谭玲芳, 周克兵. 基于生物信息学整合鉴定与支气管哮喘相关的潜在诊断生物标志物[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 329-334.
[9] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[10] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[11] 吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.
[12] 王蕾, 姜岱山, 朱保锋, 贾寒雨, 沈君华, 张毅. 基于GEO数据库的热射病神经损伤相关基因的生物信息学分析[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 76-84.
[13] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
[14] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
[15] 王倩, 王永萍, 李新培, 杨成艳, 许慧, 孙凤娟, 刘亚平. 伴基因突变的低钾血症诊断学特征分析[J]. 中华诊断学电子杂志, 2023, 11(02): 115-119.
阅读次数
全文


摘要