切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2017, Vol. 07 ›› Issue (05) : 234 -240. doi: 10.3877/cma.j.issn.2095-2007.2017.05.008

所属专题: 文献

综述

弱视发病机制相关的研究进展
王星1, 邹云春1,(), 严丽英1   
  1. 1. 637000 南充,川北医学院附属医院眼科
  • 收稿日期:2017-08-10 出版日期:2017-10-28
  • 通信作者: 邹云春
  • 基金资助:
    四川省科技计划项目(2015JY0263)

Recent advances in the study of pathogenesis of amblyopia

Xing Wang1, Yunchun Zou1,(), Liying Yan1   

  1. 1. Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
  • Received:2017-08-10 Published:2017-10-28
  • Corresponding author: Yunchun Zou
  • About author:
    Corresponding author: Zou Yunchun, Email:
引用本文:

王星, 邹云春, 严丽英. 弱视发病机制相关的研究进展[J]. 中华眼科医学杂志(电子版), 2017, 07(05): 234-240.

Xing Wang, Yunchun Zou, Liying Yan. Recent advances in the study of pathogenesis of amblyopia[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2017, 07(05): 234-240.

弱视是常见的严重损害儿童视力的眼部疾病之一。它是在视觉发育期内由于异常视觉经验引起的单眼或双眼最佳矫正视力下降。弱视发病后,眼部检查无器质性病变。关于弱视的分类,国际上有不同主张,多数学者认同的弱视类型是斜视性弱视、屈光参差性弱视、屈光不正性弱视及形觉剥夺性弱视。弱视的发病机制较为复杂,具体的发病原因尚未完全明确。目前,国际上多以双眼异常的相互作用和形觉剥夺理论为研究基础。近年来,随着科学技术的发展,弱视的发病机制在分子水平、电生理、影像学及光学相干断层扫描等多方面的研究中均取得了显著的进展。弱视发病机制的研究是一项复杂且涉及多种学科和方法的综合性研究。因此,本文中笔者就弱视发病机制方面的研究情况进行综述。

Amblyopia is one of the most common eye diseases that seriously impair the vision of children. During the visual development period, the monocular or binocular eyes have the best corrected visual acuity due to abnormal visual experience, and there is no organic lesion in the ocular examination. At present, classification of amblyopia, have different views on international, classification method is more suitable for clinical and scientific research practice and most scholars accept is divided into amblyopia strabismus amblyopia and anisometropic amblyopia and ametropia amblyopia and deprivation amblyopia. The mechanism of amblyopia is extremely complex, the specific etiology is not clear, the more popular is the two theories of von Noorden according to my research and other laboratory results suggest that the interaction and form deprivation theory of abnormal eyes. With the development of science and technology, the pathogenesis of amblyopia has made remarkable progress in many aspects, such as molecular level, electrophysiology, imaging and optical coherence tomography. The study of the pathogenesis of amblyopia is a complex and comprehensive study involving many subjects and methods. Therefore, the research on the pathogenesis of amblyopia is reviewed in this paper.

[1]
甘晓玲. 弱视的定义、分类及疗效评价标准[J]. 中国斜视与小儿眼科杂志,1996,4(3):97.
[2]
田蔓男,李丽. 弱视综合治疗的临床疗效观察[J]. 中国斜视与小儿眼科杂志,2005,18(1):94-95.
[3]
赵堪兴. 早期发现和早期干预努力提高弱视的防治水平[J]. 中华眼科杂志,2002,38(8):449-451.
[4]
杨景存. 眼外肌学[M]. 郑州:河南科学技术出版社,1994:189-196.
[5]
李兰,樊良弼. 综合疗法治疗儿童弱视619眼疗效观察[J]. 中国斜视与小儿眼科杂志,1997,5(3):104-107.
[6]
Oberhammer FA, Pavelka M, Sharma S, et al. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1[J]. Proceedings of the National Academy of Sciences of America, 1992, 89(12):5408-5412.
[7]
Fu J, Li SM, Li SY, et al. Prevalence, causes and associations of amblyopia in year 1 students in Central China : The Anyang childhood eye study (ACES)[J]. Graefe's archive for clinical and experimental ophthalmology, 2014, 252(1):137-143.
[8]
Pi LH, Chen L, Liu Q, et al. Prevalence of eye diseases and causes of visual impairment in school-aged children in Western China[J]. Journal of Epidemiology, 2012, 22(1):37-44.
[9]
Wu JF, Bi HS, Wang SM, et al. Refractive error, visual acuity and causes of vision loss in children in Shandong, China. The Shandong Children Eye Study[J]. Plos One, 2013, 8(12):e82763.
[10]
Elflein HM, Fresenius S, Lamparter J, et al. The prevalence of amblyopia in Germany: data from the prospective, population-based Gutenberg Health Study[J]. Deutsches Arzteblatt International, 2015, 112(19):338-344.
[11]
Chen X, Fu Z, Yu J, et al. Prevalence of amblyopia and strabismus in Eastern China: results from screening of preschool children aged 36-72 months[J]. Brit Jour Ophthalmol, 2016, 100(4):515-519.
[12]
Xiao O, Morgan IG, Ellwein LB, et al. Prevalence of Amblyopia in School-Aged Children and Variations by Age, Gender, and Ethnicity in a Multi-Country Refractive Error Study[J]. Ophthalmology, 2015, 122(9):1924-1931.
[13]
Maisie P, Jiayan H, Maguire MG, et al. Risk factors for amblyopia in the vision in preschoolers study[J]. Ophthalmology, 2014, 121(3):622-629.
[14]
赵家良. 眼科临床指南[M]. 北京:人民卫生出版社,2013:589-590.
[15]
Orssaud C. Visualisation in-vivo des anomalies cérébrales de l'amblyopie. De l'électro-encéphalogramme quantifié àla magnéto-encéphalographie[J]. Revue Francophone Dorthoptie, 2015, 8(2):110-116.
[16]
Von Noorden GK, Burian HM. Visual acuity in normal and amblyopic patients under reduced illumination.Ⅰ. Behavior of visual acuity with and without neutral density filter.[J]. Ama Arch Ophthalmol, 1959, 61(4):533-535.
[17]
王晗敏,荣翱,莫利娟,等. 两种病因弱视幼猫视网膜中NOS和GABA的表达[J]. 国际眼科杂志,2016,16(11):2006-2009.
[18]
Zou YC, Liu LQ, Zhang MX. The expression of vasoactive intestinal polypeptide in visual cortex-17 in normal visual development and formation of anisometropic amblyopia[J]. Seminars in Ophthalmology, 2014, 29(2):59-65.
[19]
Williams K, Balsor JL, Beshara S, et al. Experience-dependent central vision deficits: Neurobiology and visual acuity[J]. Vision Research, 2015, 57(114):68-78.
[20]
化志娟,许静,周圆,等. 形觉剥夺性弱视幼猫视皮质17区生长相关蛋白-43的表达[J]. 眼科新进展,2015,35(3):227-230.
[21]
袁学双. GSK-3β、CRMP-2在形觉剥夺性弱视大鼠视皮层的表达[D]. 衡阳:南华大学,2016.
[22]
郗平. cPKC-γ在小鼠视皮层发育中表达的动态变化及单眼剥夺对其影响[D]. 北京:首都医科大学,2016.
[23]
Prokosch-willing V, Meyer ZHM, Mertsch S, et al. Postnatal Visual Deprivation in Rats Regulates Several Retinal Genes and Proteins, Including Differentiation-Associated Fibroblast Growth Factor-2[J]. Developmental Neuroscience, 2015, 37(1):14-28.
[24]
川岛幸夫,单扬. 弱视及电生理学的新进展[J]. 国际眼科纵览,1989(6):352-356.
[25]
刘文舟,段俊国,周华祥. 弱视儿童图形视觉诱发电位分析[J]. 癫痫与神经电生理学杂志,2001,10(1):49-50.
[26]
Lombroso CT, Duffy FH, Robb RM. Selective suppression of cerebral evoked potentials to patterned light in amblyopia ex anopsia[J]. Electroencephalogr Clin Neurophysiol, 1969, 27(3):238-247.
[27]
Seymen P, Selamet U, Aytac E, et al. Evaluation of visual evoked potentials in chronic renal failure patients with different treatment modalities[J]. Journal of Nephrology, 2010, 23(6):705-710.
[28]
Von Noorden GK, Burian HM. An electro-ophthalmographic study of the behavior of the fixation of amblyopic eyes in light- and dark-adapted state: a preliminary report.[J]. American Journal of Ophthalmology, 1958, 46(1):68-77.
[29]
周妍丽,钱志刚,陈建平.单眼远视性弱视儿童P-VEP检查的相关研究与临床分析[J]. 中国中医眼科杂志,2014,24(6):432-434.
[30]
Kelly JP, Tarczy-Hornoch K, Herlihy E, et al. Occlusion therapy improves phase-alignment of the cortical response in amblyopia[J]. Vision Research, 2015, 11(4):142-150.
[31]
Zhou A, Jiang Y, Chen J, et al. Neural Mechanisms of Selective Attention in Children with Amblyopia[J]. Plos One, 2015, 10(6):e0125370.
[32]
彭芳,陈圣龙. 斜视性弱视多焦视觉诱发电位的研究[J]. 吉林医学,2014,35(2):4931-4932.
[33]
Crewther DP, Crewther SG. A new model of strabismic amblyopia: Loss of spatial acuity due to increased temporal dispersion of geniculate X-cell afferents on to cortical neurons[J]. Vision Research, 2015, 11(4):79-86.
[34]
Shooner C, Hallum LE, Kumbhani RD, et al. Population representation of visual information in areas V1 and V2 of amblyopic macaques[J]. Vision Research, 2015, 11(4):56-67.
[35]
Shooner C, Hallum LE, Kumbhani RD, et al. Asymmetric dichoptic masking in visual cortex of amblyopic macaque monkeys[J]. Journal of Neuroscience, 2017, 37(36):8734-8741.
[36]
Frantz MG, Kast RJ, Dorton HM, et al. Nogo Receptor 1 Limits Ocular Dominance Plasticity but not Turnover of Axonal Boutons in a Model of Amblyopia[J]. Cerebral Cortex, 2016, 26(5):1975-1985.
[37]
Trachtenberg JT, Trepel C, Stryker MP. Rapid Extragranular Plasticity in the Absence of Thalamocortical Plasticity in the Developing Primary Visual Cortex[J]. Science, 2000, 287(5460):2029-2032.
[38]
Lein ES, Shatz CJ. Rapid Regulation of Brain-Derived Neurotrophic Factor mRNA within Eye-Specific Circuits during Ocular Dominance Column Formation[J]. Journal of Neuroscience, 2000, 20(4):1470-1483.
[39]
Alekseenko SV, Toporova SN, Shkorbatova PY. The Sizes of Cells Providing Interhemisphere and Intrahemisphere Connections in the Cat Visual Cortex after Lesioning of Binocular Vision[J]. Neuroscience & Behavioral Physiology, 2012, 42(8):818-821.
[40]
Alekseenko SV, Toporova SN, Shkorbatova PY. Interhemisphere Connections of Eye Dominance Columns in the Cat Visual Cortex in Conditions of Impaired Binocular Vision[J]. Neuroscience & Behavioral Physiology, 2009, 39(5):489-495.
[41]
Silver MA, Fagiolini M, Gillespie DC, et al. Infusion of nerve growth factor (NGF) into kitten visual cortex increases immunoreactivity for NGF, NGF receptors, and choline acetyltransferase in basal forebrain without affecting ocular dominance plasticity or column development[J]. Neuroscience, 2001, 108(4):569-585.
[42]
Sato MT, Tokunaga A, Kawai Y, et al. The effects of binocular suture and dark rearing on the induction of c-fos protein in the rat visual cortex during and after the critical period[J]. Neuroscience Research, 2000, 36(3):227-233.
[43]
Gabbott PLA, Stewart MG. Quantitative morphological effects of dark-rearing and light exposure on the synaptic connectivity of layer 4 in the rat visual cortex (area 17)[J]. Experimental Brain Research, 1987, 68(1):103-114.
[44]
Somogyi P, Hodgson AJ. Antisera to gamma-aminobutyric acid.Ⅲ. Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex[J]. Journal of Histochemistry Cytochemistry, 1985, 33(3):249-257.
[45]
Ganesan S, Raman R, Reddy S, et al. Prevalence of myopia and its association with diabetic retinopathy in subjects with type Ⅱ diabetes mellitus: A population-based study[J]. Oman journal of ophthalmology, 2012, 5(2):91-96.
[46]
张奥,严兴科,刘安国. 弱视的临床影像学研究进展及其评述[J]. 国际眼科纵览,2016,40(6):420-425.
[47]
徐静,肖满意. 影像学在弱视发病机制研究中的应用[J]. 医学与哲学,2007,28(18):45-46.
[48]
Bonhomme GR, Liu GT, Miki A, et al. Decreased cortical activation in response to a motion stimulus in anisometropic amblyopic eyes using functional magnetic resonance imaging[J]. Journal of Aapos, 2006, 10(6):540-546.
[49]
Miki A, Liu GT, Goldsmith ZG, et al. Decreased Activation of the Lateral Geniculate Nucleus in a Patient with Anisometropic Amblyopia Demonstrated by Functional Magnetic Resonance Imaging[J]. Ophthalmologica, 2015, 217(5):365-369.
[50]
Tang A, Chen T, Zhang J, et al. Abnormal Spontaneous Brain Activity in Patients With Anisometropic Amblyopia Using Resting-State Functional Magnetic Resonance Imaging[J]. Journal of Pediatric Ophthalmology & Strabismus, 2017, 54(3):1-8.
[51]
Chanraud S, Di SG, Dilharreguy B, et al. Brain functional connectivity and morphology changes in medication-overuse headache: Clue for dependence-related processes[J]. Cephalalgia An International Journal of Headache, 2014, 34(8):605-615.
[52]
Alió JL, Ortiz D, Abdelrahman A, et al. Optical analysis of visual improvement after correction of anisometropic amblyopia with a phakic intraocular lens in adult patients[J]. Ophthalmology, 2007, 114(4):643-647.
[53]
Qian L, Liying Z, Qinying J, et al. Tract-based spatial statistics analysis of white matter changes in children with anisometropic amblyopia[J]. Neuroscience Letters, 2015, 597(1):7-12.
[54]
Harry AQ, Joanne KM, Derick RJ, et al. An Evaluation of Optic Disc and Nerve Fiber Layer Examinations in Monitoring Progression of Early Glaucoma Damage[J]. Ophthalmology, 1992, 99(1):19-28.
[55]
杨益刚,郭娴吟,王忠. 弥散张量成像检测单眼成人弱视患者视放射及胼胝体白质发育情况[J]. 实用临床医学,2015,16(7):69-72.
[56]
Nimsky C, Ganslandt O, Merhof D, et al. Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking[J]. Neuroimage, 2006, 30(4):1219-1229.
[57]
Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain[J]. Magnetic Resonance in Medicine, 1999, 42(3):526-540.
[58]
Duffau H, Capelle L, Denvil D, et al. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients[J]. Journal of Neurosurgery, 2003, 98(4):764-778.
[59]
Guye M, Parker GM, Boulby P, et al. Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo[J]. Neuroimage, 2003, 19(4):1349-1360.
[60]
Wang T, Li Q, Guo M, et al. Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state[J]. Brain Research, 2014, 1563(4):41-51.
[61]
Allen B, Spiegel DP, Thompson B, et al. Altered white matter in early visual pathways of human amblyopes[J]. Vision Research, 2015, 11(4):48-55.
[62]
Clavagnier S, Dumoulin SO, Hess RF. Is the Cortical Deficit in Amblyopia Due to Reduced Cortical Magnification, Loss of Neural Resolution, or Neural Disorganization?[J]. Journal of Neuroscience, 2015, 35(44):14740-14755.
[63]
楚艳华. 视网膜细胞分布特征及自适应光学系统对弱视人眼视网膜的研究[D]. 上海:复旦大学,2004.
[64]
Chung STL, Kumar G, Li RW, et al. Characteristics of Fixational Eye Movements in Amblyopia: Limitations on Fixation Stability and Acuity?[J]. Vision Research, 2015, 11(4):87-99.
[65]
Liang M, Xie B, Yang H, et al. Distinct patterns of spontaneous brain activity between children and adults with anisometropic amblyopia: a resting-state fMRI study[J]. Graefes Archive for Clinical & Experimental Ophthalmology, 2016, 254(3):569-576.
[66]
任敏,钟鑫,杭伟奇,等. OCT在儿童弱视研究中的应用[J]. 中医眼耳鼻喉杂志,2015,5(3):166-168.
[67]
Dickmann A, Petroni S, Salerni A, et al. Unilateral amblyopia: An optical coherence tomography study[J]. Journal of American Association for Pediatric Ophthalmology & Strabismus, 2009, 13(2):148-150.
[68]
Syunsuke A, Atsushi M, Tsutomu Y, et al. A comparison between amblyopic and fellow eyes in unilateral amblyopia using spectral-domain optical coherence tomography[J]. Clinical Ophthalmology, 2014, 8(1):2199-2207.
[69]
Johnson DA. The use of the scanning laser ophthalmoscope in the evaluation of amblyopia[J]. Trans Am Ophthalmol Soc, 2006, 104(12):414-436.
[70]
Wiesel TN, Hubel DH, Lam DM. Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport[J]. Brain Research, 1974, 79(2):273-279.
[71]
Droz B, Koenig HL, Biamberardino LD, et al. Axonal migration of protein and glycoprotein to nerve endings.Ⅰ. Radioautographic analysis of the renewal of protein in nerve endings of chicken ciliary ganglion after intracerebral injection of (3H)lysine[J]. Brain Research, 1973, 60(1):93-127.
[72]
Kara O, Altintas O, Karaman S, et al. Analysis of Choroidal Thickness Using Spectral-Domain OCT in Children With Unilateral Amblyopia[J]. Journal of Pediatric Ophthalmology & Strabismus, 2015, 52(3):159-166.
[73]
Demircan S, Gokce G, Yuvaci I, et al. The Assessment of Anterior and Posterior Ocular Structures in Hyperopic Anisometropic Amblyopia[J]. Medical Science Monitor, 2015, 21(2):1181-1188.
[74]
Liu Y, Dong Y, Zhao K. A Meta-Analysis of Choroidal Thickness Changes in Unilateral Amblyopia[J]. Journal of Ophthalmol, 2017, 2017(2):1-10.
[75]
欧召喜,张光辉,杨玉珠. OCT对难治性弱视眼黄斑及视盘视网膜厚度分区测定的分析[J]. 国际眼科杂志,2014,14(2):317-320.
[76]
杨帆,郑煜,林世斌,等. 儿童屈光参差性弱视三维频域光学相干断层扫描的研究[J]. 山西医药杂志,2014,43(13):1479-1481.
[77]
杨忠友,明春平,徐菁慧,等. 沧州地区正常儿童及弱视患儿OCT特点研究[J]. 世界中医药,2015,10(2):1544-1546.
[78]
初翠英,代春华,宋修芬,等. 屈光参差性弱视儿童视网膜光学相干断层成像研究[J]. 中国斜视与小儿眼科杂志,2014,22(2):31-34.
[79]
路素华,刘慧,王戈平. 无明显病因弱视儿童黄斑光学相干断层成像检查[J]. 中国斜视与小儿眼科杂志,2015,23(1):30-32.
[80]
闫锡秋,苑明茹. 弱视治愈儿童视网膜厚度的光学相干断层扫描[J]. 中国伤残医学,2014,22(10):188.
[81]
贾丽,王健英. OCT对屈光参差性弱视儿童黄斑A1区扫描的动态观察[J]. 国际眼科杂志,2014,14(6):1089-1091.
[82]
Szigeti A, Tátrai E, Szamosi A, et al. A Morphological Study of Retinal Changes in Unilateral Amblyopia Using Optical Coherence Tomography Image Segmentation[J]. Plos One, 2014, 9(2):e88363.
[83]
Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. Journal of Physiology, 1962, 160(1):106-154.
[84]
Ikeda Y, Akiyama K, Mita H, et al. Flow cytometric evaluation of superoxide generation in granulocytes of asthmatic patients[J]. Japanese Journal of National Medical Services, 1995, 49(7):547-553.
[85]
Wai MSM, Lorke DE, Lai SK, et al. Morphogenesis of the different types of photoreceptors of the chicken(Gallus domesticus)retina and the effect of amblyopia in neonatal chicken[J]. Microscopy Research & Technique, 2006, 69(2):99-107.
[86]
Hollyfield JG, Varner HH, Rayborn ME, et al. Retinal attachment to the pigment epithelium. Linkage through an extracellular sheath surrounding cone photoreceptors[J]. Retina, 1989, 9(1):59-68.
[87]
Rynders MC, Grosvenor T, Enoch JM. Stability of the Stiles-Crawford function in a unilateral amblyopic subject over a 38-year period: a case study[J]. Optometry & Vision Science, 1995, 72(3):177-185.
[88]
Campos EC, Bedell HE, Enoch JM, et al. Retinal receptive field-like properties and Stiles-Crawford effect in a patient with a traumatic choroidal rupture[J]. Documenta Ophthalmologica, 1978, 45(2):381-395.
[89]
Enoch JM, Eisner A, Bedell HE. Further evaluation of an apparent failure of the photoreceptor alignment mechanism in a human observer[J]. Arch Ophthalmol, 1982, 100(8):1280-1281.
[90]
Renner AB, Knau H, Neitz M, et al. Photopigment optical density of the human foveola and a paradoxical senescent increase outside the fovea[J]. Vis Neurosci, 2004, 21(6):827-834.
[91]
杨景存. 眼外肌病学[M]. 郑州:郑州大学出版社,2003,281-283.
[92]
Philpot BD, Sekhar AK, Shouval HZ, et al. Visual Experience and Deprivation Bidirectionally Modify the Composition and Function of NMDA Receptors in Visual Cortex[J]. Neuron, 2001, 29(1):157-169.
[93]
Morgan S, Jennifer C, Leslie A, et al. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex[J]. Nature, 1994, 368(6467):144-147.
[94]
Flint AC, Maisch US, Weishaupt JH, et al. NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex[J]. Journal of Neuroscience, 1997, 17(7):2469-2476.
[95]
Fagiolini M, Pizzorusso T, Berardi N, et al. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation[J]. Vision Research, 1994, 34(6):709-720.
[96]
Sans N, Petralia RS, Wang YX, et al. A developmental change in NMDA receptor-associated proteins at hippocampal synapses[J]. Journal of Neuroscience, 2000, 20(3):1260-1271.
[97]
Jianhong L, Yuehua W, Robert P, et al. The Majority of N-Methyl-d-Aspartate Receptor Complexes in Adult Rat Cerebral Cortex Contain at Least Three Different Subunits (NR1/NR2A/NR2B)[J]. Molecular pharmacology, 1997, 51(1):79-86.
[98]
Quinlan EM, Olstein DH, Bear MF. Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(22):12876-12880.
[99]
Priestley T, Laughton P, Myers J, et al. Pharmacological properties of recombinant human N-methyl-D-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells[J]. Molecular Pharmacology, 1995, 48(5):841-848.
[100]
Erreger K, Dravid SM, Banke TG, et al. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles[J]. Journal of Physiology, 2005, 563(2):345-358.
[101]
Lo FS, Zhao S. N-methyl-D-aspartate receptor subunit composition in the rat trigeminal principal nucleus remains constant during postnatal development and following neonatal denervation[J]. Neuroscience, 2011, 178(3):240-249.
[102]
Jung SC, Kim J, Hoffman DA. Rapid, Bidirectional Remodeling of Synaptic NMDA Receptor Subunit Composition by A-type K Channel Activity in Hippocampal CA1 Pyramidal Neurons[J]. Neuron, 2008, 60(4):657-671.
[103]
Cheetham CE, Fox K. Presynaptic development at L4 to L2/3 excitatory synapses follows different time courses in visual and somatosensory cortex[J]. Journal of Neuroscience, 2010, 30(38):12566-12571.
[104]
Cai R, Zhou X, Guo F, et al. Maintenance of enriched environment-induced changes of auditory spatial sensitivity and expression of GABA, NMDA, and AMPA receptor subunits in rat auditory cortex[J]. Neurobiology of Learning & Memory, 2010, 94(4):452-460.
[105]
Olavarria JF, Brederode JF, Spain WJ. Retinal influences induce bidirectional changes in the kinetics of N-methyl-d-aspartate receptor-mediated responses in striate cortex cells during postnatal development[J]. Neuroscience, 2007, 148(3):683-699.
[106]
Jonas P, Racca C, Sakmann B, et al. Differences in Ca2+,permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression[J]. Neuron, 1994, 12(6):1281-1289.
[107]
Ohno T, Ito M. Specific involvement of postsynaptic GluN2B-containing NMDA receptors in the developmental elimination of corticospinal synapses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(34):15252-15257.
[108]
Ishrat T, Pillai B, Soliman S, et al. Low-Dose Candesartan Enhances Molecular Mediators of Neuroplasticity and Subsequent Functional Recovery After Ischemic Stroke in Rats[J]. Molecular Neurobiology, 2015, 51(3):1542-1543.
[109]
Pickard L, Noël J, Henley JM, et al. Developmental Changes in Synaptic AMPA and NMDA Receptor Distribution and AMPA Receptor Subunit Composition in Living Hippocampal Neurons[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2000, 20(21):7922-7931.
[110]
Kim E, Cho KO, Rothschild A, et al. Heteromultimerization and NMDA Receptor-Clustering Activity of Chapsyn-110, a Member of the PSD-95 Family of Proteins[J]. Neuron, 1996, 17(1):103-113.
[111]
Niethammer M, Kim E, Sheng M. Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases[J]. Journal of Neuroscience, 1996, 16(7):2157-2163.
[1] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[2] 林凌, 李佩, 赵玮. 牛牙样牙发病机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 75-80.
[3] 樊逸隽, 杨枫, 王玮, 殷鹤英, 刘俊. 喉前淋巴结转移对甲状腺乳头状癌诊疗价值的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 306-310.
[4] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[5] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[6] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[7] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[8] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[9] 唐悆, 邓宏伟, 陶政旸, 吕宗岳. 基于Gabor视标的视知觉学习治疗难治性弱视的临床疗效观察[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 134-139.
[10] 栾恒钰, 赛晓勇. 创伤后应激障碍的治疗现状及研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 112-118.
[11] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[12] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[13] 黄文鹏, 邱永康, 杨琦, 宋乐乐, 陈钊, 范岩, 康磊. PET相关影像组学在肿瘤预后中的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 104-110.
[14] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[15] 吴一菡, 雷章, 卢宏达. MUC16/CA125在良恶性肿瘤诊治中的作用及其研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 591-595.
阅读次数
全文


摘要