切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2017, Vol. 07 ›› Issue (04) : 158 -164. doi: 10.3877/cma.j.issn.2095-2007.2017.04.003

所属专题: 总编推荐 文献

论著

高分子量脂联素、肿瘤坏死因子-α及血管内皮生长因子与糖尿病性视网膜病变的关系研究
闫配1, 张莉1,(), 张晓红1, 张彦坤2   
  1. 1. 050011 河北省老年病医院眼科
    2. 050041 河北省胸科医院眼科
  • 收稿日期:2017-07-20 出版日期:2017-08-28
  • 通信作者: 张莉
  • 基金资助:
    河北省科技支撑计划项目(132777100D)

Study on the relationship among high molecular weight adiponectin, tumor necrosis factor-α and vascular endothelial growth factor with diabetic retinopathy

Pei Yan1, Li Zhang1,(), Xiaohong Zhang1, Yankun Zhang2   

  1. 1. Department of Ophthalmology, Hebei provincial geriatric hospital, Shijiazhuang 050011, China
    2. Department of Ophthalmology, Chest Hospital of Hebei Province, Shijiazhuang 050041, China
  • Received:2017-07-20 Published:2017-08-28
  • Corresponding author: Li Zhang
  • About author:
    Corresponding author: Zhang Li, Email:
引用本文:

闫配, 张莉, 张晓红, 张彦坤. 高分子量脂联素、肿瘤坏死因子-α及血管内皮生长因子与糖尿病性视网膜病变的关系研究[J]. 中华眼科医学杂志(电子版), 2017, 07(04): 158-164.

Pei Yan, Li Zhang, Xiaohong Zhang, Yankun Zhang. Study on the relationship among high molecular weight adiponectin, tumor necrosis factor-α and vascular endothelial growth factor with diabetic retinopathy[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2017, 07(04): 158-164.

目的

探讨高分子量脂联素(HMW-ADP)、肿瘤坏死因子(TNF)-α及血管内皮生长因子(VEGF)与糖尿病性视网膜病变(DR)之间的关系。

方法

选取河北省老年病医院眼科2014年1月至2014年12月临床检查确诊为2型糖尿病的150例患者的临床资料。患者共分为无DR(NDR)组、非增殖性DR(NPDR)组及增殖性DR(PDR)组,每组均为50例。另选取同期健康体检者50例作为对照组。性别、高血压病史及糖尿病家族病史的比较采用χ2检验。HMW-ADP、TNF-α、VEGF水平、生化指标及身体质量指数等临床资料均以均数±标准差(±s)表示,并采用单因素方差分析进行比较。HMW-ADP、TNF-α、VEGF及其他因素对NPDR和PDR患者的影响采用多元Logistic回归分析。HMW-ADP、TNF-α及VEGF与DR的相关性采用Pearson相关分析。

结果

与NDR组和对照组患者相比,NPDR组和PDR组的年龄较大(F=5.329,P<0.05);NDR组、NPDR组及PDR组患者的高血压病史显著长于对照组(χ2=20.215,P<0.05);PDR组的患者病程最长,其次为NPDR组,NDR组最短(F=96.434,P<0.05);NDR组、NPDR组及PDR组患者的空腹血糖高于对照组(F=12.510,P<0.05);PDR组患者的空腹胰岛素水平最高,其次为NPDR组和NDR组,对照组最低(F=25.305,P<0.05);NDR组、NPDR组及PDR组患者的甘油三酯(TG)含量高于对照组(F=16.419,P<0.05),而高密度脂蛋白胆固醇(HDL-C)含量低于对照组(F=4.259,P<0.05);NPDR组和PDR组患者的肌氨酸酐高于对照组(F=47.158,P<0.05);组间比较,差异均有统计学意义。NPDR组与PDR组患者的HMW-ADP水平低于对照组与NDR组,NDR组又低于对照组,组间比较差异有统计学意义(F=362.480,P<0.05)。PDR组患者的TNF-α与VEGF水平最高,其次为NPDR组,而NDR组与对照组最低,组间比较差异均有统计学意义(F=239.200,641.970;P<0.05)。多因素分析结果显示,年龄、病程、TNF-α及VEGF是NPDR的独立危险因素(χ2=7.621,18.331,5.532,5.618;P<0.05),也是PDR的独立危险因素(χ2=6.962,11.542,5.615,5.331;P<0.05)。而HDL-C和HMW-ADP则是NPDR的保护因素(χ2=6.694,10.671;P<0.05),也是PDR的保护因素(χ2=5.674,7.671;P<0.05)。DR患者中的HMW-ADP水平与TNF-α、VEGF均呈显著负相关性(r=-0.328,-0.810;P<0.05)。

结论

DR患者的HMW-ADP水平较低,但TNF-α和VEGF水平较高,HMW-ADP与TNF-α、VEGF呈显著负相关。说明HMW-ADP是DR的保护因素,而TNF-α、VEGF是独立危险因素。

Objective

To discuss the relationship among high molecular weight adiponectin (HMW-ADP), tumor necrosis factor(TNF)-α and vascular endothelial growth factor(VEGF) with diabetic retinopathy(DR).

Methods

150 cases with type 2 diabetes mellitus from January to December 2014 were selected as study objects, 50 cases with NDR, 50 cases with NPDR and 50 cases with PDR. 50 cases for physical examination were selected as control group. Compared with the gender, history of hypertension and diabetes family history of χ2test. The clinical data such as HMW-ADP, TNF-α, VEGF, biochemical indexes and body mass index were all expressed by mean and standard deviation (±s), and compared by single factor analysis of variance. The effects of HMW-ADP, TNF-α, VEGF and other factors on NPDR and PDR were analyzed by multiple Logistic regression. The correlation of HMW-ADP, TNF-α and VEGF with DR was analyzed by Pearson correlation.

Results

The age of the NPDR group and the PDR group were larger than that of the NDR group and the control group (F=5.329, P<0.05). The history of hypertension in group NDR, group NPDR and group PDR were significantly higher than that of control group (χ2=20.215, P<0.05). The patients in group PDR had the longest course, followed by group NPDR, and the group NDR was the shortest (F=96.434, P<0.05). Fasting blood glucose in patients in group NDR, group NPDR and group PDR were significantly higher than that of control group (F=12.510, P<0.05). The fasting insulin levels in group PDR were the highest, followed by group NPDR and group NDR, and lowest in the control group (F=25.305, P<0.05). The content of triglyceride (TG) in patients in group NDR, group NPDR and group PDR were significantly higher than that of control group (F=16.419, P<0.05). The content of high-density lipoprotein cholesterol (HDL-C) was significantly lower than that of the control group (F=4.259, P<0.05). The creatinine of group NPDR and group PDR was significantly higher than that of control group (F=47.158, P<0.05). The difference between the two groups was statistically significant. The level of HMW-ADP in the NPDR group and the PDR group were significantly lower than that in the control group and the NDR group, and the NDR group was significantly lower than that of the control group, the difference between the two groups was statistically significant (F=362.480, P<0.05). The levels of TNF-α and VEGF in group PDR were the highest, followed by NPDR group; NDR group and control group were lowest, the difference between the two groups were statistically significant (F=239.200, 641.970; P<0.05). Multivariate analysis showed that age, duration of disease, TNF-α and VEGF were independent risk factors for NPDR (χ2=7.621, 18.331, 5.532, 5.618; P<0.05), and they were also independent risk factors for PDR (χ2=6.962, 11.542, 5.615, 5.331; P<0.05). HDL-C and HMW-ADP were protective factors for NPDR (χ2=6.694, 10.671; P<0.05), and they were also protective factors for PDR (χ2=5.674, 7.671; P<0.05). The levels of HMW-ADP in patients with DR were negatively correlated with TNF-α and VEGF (r=-0.328, -0.810; P<0.05).

Conclusion

In patients with DR, the level of HMW-ADP decreases, and the levels of TNF-α and VEGF increase; Multivariate analysis shows that HMW-ADP is protective factor, and TNF-α and VEGF are risk factor; HMW-ADP is negatively correlated with TNF-α and VEGF.

表1 NDR组、NPDR组、PDR组及对照组受检者性别、年龄、病程及各项检查指标的比较
表2 NDR组、NPDR组、PDR组及对照组受检者血清HMW-ADP、TNF-α及VEGF水平的比较
表3 HMW-ADP、TNF-α、VEGF以及其他因素对NPDR影响的多因素分析
表4 HMW-ADP、TNF-α、VEGF以及其他因素对PDR影响的多因素分析
图1 DR患者的高分子量脂联素水平与肿瘤坏死因子-α的相关性散点图 二者比较呈显著负相关
图2 DR患者的高分子量脂联素水平与血管内皮生长因子的相关性散点图 二者比较呈显著负相关
[1]
李秀伦,龙文莉. 2型非增殖性糖尿病视网膜病变的影响因素分析[J]. 中国当代医药,2016,23(9):12-14.
[2]
潘爱平,杨云霞,徐洪磊. 2型糖尿病视网膜病变患者血清脂联素与VEGF水平的变化及意义[J]. 临床输血与检验,2017,19(2):170-172.
[3]
李芸云,刘宁朴. 脂联素与糖尿病视网膜病变相关性研究现状[J]. 中华眼底病杂志,2017,33(3):311-316.
[4]
李若琳,陈楠. 血管内皮生长因子和结缔组织生长因子在增生型糖尿病视网膜病变中的研究进展[J]. 临床眼科杂志,2015,23(6):573-576.
[5]
冯伟,杨金奎. 2型糖尿病增殖期视网膜病变与血清胆红素水平关系的研究[J]. 首都医科大学学报,2012,33(4):481-484.
[6]
李红霞,崔巍,高伟. 老年2型糖尿病发生增殖性糖尿病视网膜病变的危险因素分析[J]. 内蒙古医学杂志,2013,45(5):517-520.
[7]
王莉莉,刘堃,许迅. 糖尿病性视网膜病变抗血管内皮生长因子治疗进展[J]. 上海交通大学学报(医学版),2012,32(2):219-225.
[8]
梁辰,施榕,朱静芬,等.上海市浦东新区社区2型糖尿病患者糖尿病性视网膜病变的患病情况及影响因素调查[J]. 中国全科医学,2016,19(4):474-478.
[9]
边菁哲.初诊2型糖尿病患者糖尿病视网膜病变及微血管病变相关性研究[J]. 河北医学,2013,19(12):1866-1868.
[10]
张艳莉,赵岐,黄强. 糖尿病视网膜病变患者血清相关细胞因子水平的研究[J]. 河北医学,2017,23(3):391-394.
[11]
张军,刘森玉. VEGF和bFGF在蒙古族糖尿病视网膜病变中的表达[J]. 国际眼科杂志,2016,16(7):1313-1315.
[12]
孙敏,张少波,宋宗明,等. 增生型糖尿病视网膜病变玻璃体液白介素-18和血管内皮生长因子的定量分析[J]. 中华眼底病杂志,2011,27(3):279-281.
[13]
王伟超,张洁,王虹,等. 泪液肿瘤坏死因子-α水平在糖尿病视网膜病变诊断中的意义[J]. 中国老年学杂志,2017,37(5):1127-1129.
[14]
李昕,郑曰忠. 糖尿病视网膜病变患者血清肿瘤坏死因子-α白细胞介素-2和细胞间粘附分子-1水平检测意义[J]. 中国实用眼科杂志,2013,31(2):111-114.
[15]
李春雷,庞燕,李书丹,等. 血清脂联素、瘦素在糖尿病性视网膜病变早期诊断中的应用[J].求医问药:下半月刊,2012,10(6):107-107.
[16]
姥勇,屈阳,朱旅云,等. 脂联素与2型糖尿病血管病变的关系[J]. 新乡医学院学报,2011,28(1):89-91.
[17]
张冬艳,马鸿雁,苏军燕,等. 血清结缔组织生长因子、25-羟维生素D、脂联素检测在2型糖尿病视网膜病变诊断及病情评价中的价值[J]. 中国实验诊断学,2017,21(3):505-508.
[18]
陶丽妃,邱一果,雷博. 脂联素与视网膜血管性疾病的相关性[J]. 中华眼底病杂志,2015,31(2):202-205.
[19]
朱巧平,谢安明,郝艳芳. 脂联素对小鼠氧诱导视网膜病变的保护作用[J]. 国际眼科杂志,2015,15(10):1695-1699.
[20]
毛丹娜,蔺涛. 脂联素对1型糖尿病小鼠视网膜节细胞和血管的影响[J]. 世界科技研究与发展,2012,34(3):472-474
[21]
周纯,牛佳媛,蔡洁,等. 糖尿病视网膜病变细胞因子及视网膜血流变化的意义[J]. 国际眼科杂志,2015,15(6):1030-1032.
[22]
石蕊,薛雨顺,王峰. 糖尿病视网膜病变合并白内障患者血清及房水中VEGI和VEGF的含量分析[J]. 陕西医学杂志,2015,44(10):1393-1395.
[23]
郭露,吕红彬. 血管内皮生长因子-2578C/A基因的多态性与糖尿病视网膜病变发生风险的Meta分析[J]. 中华实验眼科杂志,2015,33(1):70-75.
[24]
胡辅华,许玉俊,刘丽林,等. α-硫辛酸对糖尿病大鼠视网膜VEGF表达的影响及机制[J]. 重庆医学,2015,44(25):3463-3465.
[25]
裴瑞,高珩. 复方血栓通胶囊联合羟苯磺酸钙治疗早期糖尿病性视网膜病变的疗效及对hs-CRP、VEGF和IGF-1水平的影响[J]. 现代中西医结合杂志,2015,24(35):3896-3898.
[26]
汪怿,徐洁慧,李韧. 川芎嗪治疗非增殖期糖尿病视网膜病变的临床疗效及其对血清HIF-1、VEGF的影响[J]. 中国临床药理学杂志,2015,31(14):1393-1395.
[27]
王静,朱鸿,施彩虹. 糖尿病大鼠视网膜中内质网应激蛋白、HIF-1α和血管内皮生长因子的表达[J]. 国际眼科杂志,2015,15(5):772-776.
[28]
秦裕辉,李文娟,张熙,等. 双丹明目胶囊对糖尿病视网膜病变大鼠视网膜VEGF和VEGFR蛋白表达的影响[J]. 湖南中医药大学学报,2015,35(6):1-3.
[29]
郭露,吕红彬. 亚洲及欧洲人群血管内皮生长因子基因多态性与糖尿病视网膜病变的相关性meta分析[J]. 中华眼底病杂志,2015,31(2):173-178.
[30]
高玮,王婧,张超,等. 糖尿病视网膜病变患者血清炎症因子和氧化应激指标的检测及意义[J]. 海南医学院学报,2017,23(1):79-81.
[31]
黄淑伟,张龙,路广平,等. 参麦离子导入对糖尿病并发眼底病变患者TGF-β_1及Hcy水平影响研究[J]. 辽宁中医药大学学报,2017,18(6):30-33.
[32]
陈晶,李铁英,关晓海,等. 青蒿琥酯对糖尿病视网膜病变新生血管生成因子ANG、VEGF表达的影响[J]. 中国煤炭工业医学杂志,2016,19(2):248-250.
[33]
钟茜,姚小磊,梁文旺. 增生性糖尿病视网膜病变患者房水中VEGF与IL-6、IL-18相关性研究[J]. 临床眼科杂志,2016,24(3):207-210.
[34]
孙榕,回世洋. 化瘀明目汤治疗不同时期糖尿病视网膜病变疗效对比观察及其对VEGF的影响[J]. 世界中医药,2016,11(1):75-78.
[35]
李沭岩,陆士恒,李祯. 增生型糖尿病视网膜病变抗VEGF治疗后玻璃体液中VEGF及ON测定[J]. 中国实用眼科杂志,2017,35(1):29-31.
[36]
马俊起. 血管内皮生长因子基因多态性与2型糖尿病视网膜病变相关性的Meta分析[J]. 中国中医眼科杂志,2015,25(1):46-49.
[37]
段娜,戴丹,周灵. 血栓通联合眼底激光对糖尿病视网膜病变黄斑水肿患者血清NOS、VEGF和IL-6的影响[J]. 河北医药,2016,38(18):2751-2753.
[38]
饶玉萍,徐玲娟,肖紫云,等. 增生型糖尿病视网膜病变患者血浆和玻璃体中VEGF和低密度脂蛋白受体相关蛋白6的表达及其相关性[J]. 眼科新进展,2016,36(3):278-280
[39]
Giuffr G, Lodato G, Dardanoni G. Prevalence and risk factors of diabetic retinopathy in adult and elderly subjects: The Casteldaccia Eye Study[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 2004, 242(7):535-540.
[40]
Zhang XZ, Saaddine JB, Chou CF, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008[J]. Jama, 2010, 304(6):649-656.
[41]
Yau JW, Rogers SL, Kawasaki R, et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy[J]. Diabetes Care, 2012, 35(3):556-564.
[42]
Nicholson BP, Schachat AP. A review of clinical trials of anti-VEGF agents for diabetic retinopathy[J]. Graefes Archive for Clinical & Experimental Ophthalmology, 2010, 248(7):915-930.
[43]
Miller JW, Adamis AP, Aiello LP. Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy[J]. Diabetes/metabolism Research & Reviews, 2015, 13(1):37-50.
[44]
Mcarthur K, Feng B, Wu Y, et al. MicroRNA-200b Regulates Vascular Endothelial Growth Factor-Mediated Alterations in Diabetic Retinopathy[J]. Diabetes, 2011, 60(4):1314-1323.
[45]
Kondo H, Shimomura I, Matsukawa Y, et al. Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome[J]. Diabetes, 2002, 51(7):2325-2328.
[46]
王春雁. 糖尿病视网膜病变患者血清VEGF、NO的变化及临床意义[J]. 中国实验诊断学,2015,19(1):94-95.
[47]
孔颖宏,郁秋荣,龚叶,等. 糖尿病视网膜病变与血清TNF-α、IL-2和hs-CRP水平的相关性研究[J]. 北京医学,2016,38(10):1125-1127.
[48]
Solomon SD, Chew E, Duh EJ, et al. Diabetic Retinopathy: A Position Statement by the American Diabetes Association[J]. Diabetes Care, 2017, 40(3):412-418.
[49]
Ding J, Wong TY. Current epidemiology of diabetic retinopathy and diabetic macular edema.[J]. Current Diabetes Reports, 2012, 12(4):346-354.
[50]
Rema M, Srivastava BK, Anitha B, et al. Association of serum lipids with diabetic retinopathy in urban South Indians-The Chennai Urban Rural Epidemiology Study (CURES) Eye Study-2[J]. Diabetic Medicine A Journal of the British Diabetic Association, 2010, 23(9):1029-1036.
[51]
Landers J, Henderson T, Craig JE. Incidence of visual impairment due to cataract, diabetic retinopathy and trachoma in indigenous Australians within central Australia: the Central Australian Ocular Health Study[J]. New Phytologist, 2011, 39(7):604-606.
[52]
Ola MS, Nawaz MI, Siddiquei MM, et al. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy[J]. Biomedicine & Pharmacotherapy, 2012, 26(1):56-64.
[53]
Lip GY, Clementy N, Pierre B, et al. The impact of associated diabetic retinopathy on stroke and severe bleeding risk in diabetic patients with atrial fibrillation: the loire valley atrial fibrillation project[J]. Chest, 2015, 147(4):1103-1110.
[54]
Yamagishi S, Matsui T. Advanced glycation end products (AGEs), oxidative stress and diabetic retinopathy[J]. Current Pharmaceutical Biotechnology, 2011, 12(3):362-368.
[55]
Hammes HP, Feng Y, Pfister F, et al. Diabetic retinopathy: targeting vasoregression[J]. Diabetes, 2011, 60(1):9-16.
[56]
Listed N. A protocol for screening for diabetic retinopathy in Europe. Retinopathy Working Party[J]. Diabetic Medicine A Journal of the British Diabetic Association, 2010, 8(3):263-267.
[57]
Marshall G, Jones RH. Multi-state models and diabetic retinopathy[J]. Statistics in Medicine, 2010, 14(18):1975-1983.
[1] 李志娟, 包瑛, 黄惠梅, 杨楠, 张敏, 王莹, 骞佩, 牛云鹤. A20单倍剂量不足合并系统性红斑狼疮1例并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 315-322.
[2] 王博, 白子锐, 李坚. 近红外二区新型血管内皮生长因子受体靶向探针在结直肠癌小鼠模型中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(03): 173-177.
[3] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[4] 王玉芹, 刘冠群, 曲福君. IDH1和VEGF对非小细胞肺癌的诊断意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 847-849.
[5] 何继强, 任安伟, 王飞. 周围型肺癌CT特征与PCNA、VEGF及Bcl-2表达水平的相关性[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 527-529.
[6] 刘欣, 李艳敏, 郑佳, 赵商岐, 唐晓慧, 赵静, 周文涛, 周晓涛. COPD患者NLRP3炎症小体及TNF-α、HMGB1的表达及相互关系[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 468-472.
[7] 蔡欣诺, 邵思琪, 马华, 周冬梅, 潘彬, 殷松楼. 艾拉莫德通过抑制TNF-α减轻博来霉素诱导的小鼠间质性肺病[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 331-334.
[8] 林红卫, 李王平, 金发光. PM2.5激活HIF-1α-NF-κB/VEGF通路对肺损伤的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 316-322.
[9] 崔宏宇, 杨一佺, 郭黎霞, 吕爱国, 张志宏, 张新, 杨艳萍, 申然, 连丽英, 曹志刚, 王立芳, 胡建华, 范肃洁. 改良Ahmed青光眼引流阀植入术治疗闭角期新生血管性青光眼疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 76-81.
[10] 马嘉蹊, 米倩倩, 周义仁, 王丹. 阿达木单抗在眼科临床应用的新进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 377-381.
[11] 刁正文, 徐愈畅, 张杰, 张华军, 李秋霖, 陈卉. β-七叶皂苷钠联合甘油果糖治疗脑出血的临床效果分析[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 32-37.
[12] 李秋琼, 薛静, 王敏, 陈芬, 肖美芳. NSE、SIL-2R、TNF-α检测对小儿病毒性脑膜炎与细菌性脑膜炎的诊断价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 303-307.
[13] 吴晓翔, 杨波, 李景漩, 张凤玲, 郭桂辉, 郑少培. 脐动脉超声检查联合NLR、sFlt-1/PLGF对妊娠高血压综合征患者不良妊娠结局的预测价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 266-271.
[14] 蔡莉萍, 燕琪慧, 郭蔚莹. TNF-α在绝经后骨质疏松症中的研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(03): 274-279.
[15] 颜凡辉, 赵明俐, 李颖, 郭方明, 詹景冬, 赵英杰, 王阳, 张艳芬, 赵笑梅. 急性冠脉综合征患者冠脉血管病变程度与血清TNF-α、VEGF水平相关性研究[J]. 中华诊断学电子杂志, 2023, 11(03): 158-164.
阅读次数
全文


摘要