切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2025, Vol. 15 ›› Issue (03) : 155 -160. doi: 10.3877/cma.j.issn.2095-2007.2025.03.005

论著

调节性T细胞外泌体对血管内皮细胞保护作用的实验研究
葛程, 石燕红(), 陶勇   
  1. 100020 首都医科大学附属北京朝阳医院眼科
  • 收稿日期:2025-03-22 出版日期:2025-06-28
  • 通信作者: 石燕红
  • 基金资助:
    国家自然科学基金面上项目(82471081); 北京市属医院科研培育计划项目(PX2023013)

Extracellular vesicles isolated from T regulatory cells restore the inner blood-retinal barrier in vitro

Cheng Ge, Yanhong Shi(), Yong Tao   

  1. Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
  • Received:2025-03-22 Published:2025-06-28
  • Corresponding author: Yanhong Shi
引用本文:

葛程, 石燕红, 陶勇. 调节性T细胞外泌体对血管内皮细胞保护作用的实验研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 155-160.

Cheng Ge, Yanhong Shi, Yong Tao. Extracellular vesicles isolated from T regulatory cells restore the inner blood-retinal barrier in vitro[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2025, 15(03): 155-160.

目的

探讨调节性T细胞(Treg)外泌体(rEXS)对内层血-视网膜屏障(IBRB)的保护作用。

方法

BV2小胶质细胞未添加100 ng/ml脂多糖(LPS)和rEXS者设为对照组;分别将添加100 ng/ml LPS、10 μg/ml rEXS+100 ng/ml LPS、20 μg/ml rEXS+100 ng/ml LPS及50 μg/ml rEXS+100 ng/ml LPS设为LPS刺激组、10 μg/ml外泌体组、20 μg/ml外泌体组及50 μg/ml外泌体组。构建BV2细胞和人脐静脉内皮细胞(HUVEC)的共培养系统模拟视网膜血管。设以未添加LPS和rEXS无BV2细胞的HUVEC新鲜培养基作为HUVEC对照组,以BV2+HUVEC、100 ng/ml LPS +BV2+HUVEC及50 μg/ml rEXS+BV2+HUVEC分别为共培养组、共培养刺激组及共培养外泌体组。采用酶联免疫吸附试验检测rEXS处理后白细胞介素(IL)-1β、肿瘤坏死因子(TNF)-α及IL-10的水平。采用免疫印迹法分析检测紧密连接蛋白(ZO)-1和闭合蛋白的表达水平。TNF-α、IL-1β、IL-10、ZO-1及闭合蛋白均符合正态分布,以±s表示,组间比较采用单因素方差分析及LSD事后检验。

结果

分离rEXS的纳米示踪结果显示为钟形曲线,曲线下的大部分面积落在rEXS的特征性尺寸范围50~155 nm内,峰值在106 nm和155 nm处,与rEXS的粒径大小分布吻合。rEXS的浓度为4.74×1010个颗粒/ml。rEXS中存在特异性标记物。透射电子显微镜成像显示,颗粒的形状与rEXS一致且直径约100 nm。对照组、LPS刺激组、10 μg/ml外泌体组、20 μg/ml外泌体组及50 μg/ml外泌体组TNF-α蛋白浓度分别为(1035.96±32.36)pg/ml、(2965.25±4.08)pg/ml、(2960.41±35.65)pg/ml、(2863.32±30.55)pg/ml及(2586.32±33.25)pg/ml;IL-1β蛋白浓度分别为(2.60±0.05)pg/ml、(17.18±0.13)pg/ml、(10.98±0.06)pg/ml、(6.39±0.04)pg/ml及(4.05±0.06)pg/ml;IL-10蛋白浓度分别为(28.24±2.66)pg/ml、(24.55±0.77)pg/ml、(33.96±3.58)pg/ml、(34.29±4.32)pg/ml及(48.32±1.55)pg/ml,组间比较,差异有统计学意义(F=23.01,1.96,29.53;P<0.05)。以HUVEC对照组为基数,共培养组、共培养刺激组及共培养外泌体组ZO-1蛋白相对表达量分别为1.28±0.010、0.8±0.02及1.23±0.01;闭合蛋白相对表达量分别为1.37±0.04、0.81±0.02及1.18±0.03,组间比较,差异有统计学意义(F=808.3,222.2;P<0.05)。

结论

rEXS能抑制TNF-α和L-1β释放,促进IL-10介导的抗炎效应,并缓解LPS诱导的紧密连接破坏,可能对IBRB有保护作用。

Objective

The aim of this study is to investigate the effect of extracellular vesicles isolated from T regulatory cells (rEXS) on the inner blood-retinal barrier (IBRB).

Methods

BV2 microglial cells were divided into five groups: control (no LPS or rEXS), LPS-stimulated (100 ng/ml LPS), and three rEXS-treated groups (10 μg/ml, 20 μg/ml, and 50 μg/ml rEXS+ 100 ng/ml LPS). A co-culture system of BV2 cells and human umbilical vein endothelial cell (HUVEC) was used to simulate retinal vessels, with groups divided as follows: HUVEC control (no BV2), co-culture (BV2+ HUVEC), co-culture stimulated (BV2+ HUVEC+ 100 ng/ml LPS), and co-culture exosome (BV2+ HUVEC+ 50 μg/ml rEXS). ELISA was used to measure interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-10 levels, while Western blot analyzed zona occludens (ZO)-1 and occludin expression. Data were expressed as ±s and compared by one-way ANOVA and LSD post-hoc test.

Result

Nanoparticle tracking analysis showed that rEXS had a characteristic size range of 50 to 155 nm, with a peak at 106 nm and 155 nm. The rEXS concentration was 4.74×1010particles/ml. Specific markers were detected in rEXS. Transmission electron microscopy confirmed rEXS particles were approximately 100 nm in diameter. The TNF-αconcentrations in the control group, LPS-stimulated group, 10 μg/ml rEXS groups, 20 μg/ml rEXS groups, 50 μg/ml rEXS groups were (1035.96±32.36)pg/ml, (2965.25±4.08)pg/ml, (2960.41±35.65)pg/ml, (2863.32±30.55)pg/ml, (2586.32±33.25)pg/ml; IL-1βwere (2.60±0.05)pg/ml, (17.18±0.13)pg/ml, (10.98±0.06)pg/ml, (6.39±0.04)pg/ml, (4.05±0.06)pg/ml; IL-10 were (28.24±2.66)pg/ml, (24.55±0.77)pg/ml, (33.96±3.58)pg/ml, (34.29±4.32)pg/ml, and (48.32±1.55)pg/ml, respectively. There were significant differences between them (F=23.01, 1.96, 29.53; P<0.05). In the co-culture system, compared with relative control group, the ZO-1 expression levels in the co-culture group, co-culture stimulated group, co-culture exosome group were (1.28±0.010), (0.8±0.02), and (1.23±0.01); occludin were (1.37±0.04), (0.81±0.02), (1.18±0.03), respectively. There were significant differences between them (F=808.3, 222.2; P<0.05).

Conclusion

The results of the present study revealed that rEXS may have a protective effect on the IBRB by inhibiting the release of TNF-α and IL-1β cytokines, promoting IL-10-mediated anti-inflammatory effects, and alleviating LPS-induced tight junction disruption.

图2 调节性T细胞分离的外泌体对BV2细胞中脂多糖诱导炎症细胞因子表达的柱状图 图2A~2C分别示肿瘤坏死因子α、白细胞介素1β及白细胞介素10表达的柱状图
图3 调节性T细胞来源外泌体对BV2小胶质细胞和人脐静脉内皮细胞体外共培养后紧密连接蛋白-1和闭合蛋白表达的结果 图3A和3C示紧密连接蛋白-1和闭合蛋白的Western blot图像;图3B和3D示紧密连接蛋白-1和闭合蛋白Western blot定量柱状图
[1]
张慧,张晓敏,李筱荣. 外泌体在糖尿病视网膜病变中的研究进展[J]. 中华实验眼科杂志2020,38(9):799-803.
[2]
刘滢,张力,杨叶虹. 外泌体miRNAs在糖尿病微血管并发症中的作用研究进展[J]. 复旦学报(医学版)2023,50(6):897-905.
[3]
徐宁达,黄旅珍,朱莉,等. 人脐带间充质干细胞源外泌体对缺氧条件下RPE细胞生物学特性的影响[J]. 中华眼科杂志2019,55(12):933-941.
[4]
石燕红,陶勇.外泌体在眼科的研究进展[J/OL].中华眼科医学杂志(电子版)2021,11(3):183-187.
[5]
Gu R, Lei B, Jiang C, et al. Glucocorticoid-induced leucine zipper suppresses ICAM-1 and MCP-1 expression by dephosphorylation of NF-kappaB p65 in retinal endothelial cells [J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 631-641.
[6]
Wang H, Ye Q, Xu W, et al. Research trends of worldwide ophthalmologic randomized controlled trials in the 21st century: A bibliometric study [J]. Adv Ophthalmol Pract Res, 2023, 3(4): 159-170.
[7]
Mihalache A, Hatamnejad A, Patil NS, et al. Intravitreal triamcinolone acetonide for diabetic macular edema and macular edema secondary to retinal vein occlusion: a meta-analysis [J]. Ophthalmologica, 2024, 247(1): 19-29.
[8]
Shughoury A, Bhatwadekar A, Jusufbegovic D, et al. The evolving therapeutic landscape of diabetic retinopathy [J]. Expert Opin Biol Ther, 2023, 23(10): 969-985.
[9]
Quiriconi P, Hristov V, Aburaya M, et al. The role of microglia in the development of diabetic retinopathy [J]. NPJ Metab Health Dis, 2024, 2(1): 7.
[10]
Arroba AI, Alcalde-Estevez E, García-Ramírez M, et al. Modulation of microglia polarization dynamics during diabetic retinopathy in db/db Mice [J]. Biochem Biophys Acta, 2016, 1862(9): 1663-1674.
[11]
Park BK, Kim YH, Kim YR, et al. Antineuroinflammatory and neuroprotective effects of gyejibokryeong-hwan in lipopoly-saccharide-stimulated BV2 Microglia [J]. Evid Based Complement Alternat Med, 2019, PMID:7585896.
[12]
Dinet V, Petry KG, Badaut J. Brain-immune interactions and neuroinflammation after traumatic brain injury [J]. Front Neurosci, 2019, 13:1178.
[13]
Jung YJ, Tweedie D, Scerba MT, et al. Neuroinflammation as a factor of neurodegenerative disease: thalidomide analogs as treatments [J]. Front Cell Dev Biol, 2019, 7: 313.
[14]
Obert E, Strauss R, Brandon C, et al. Targeting the tight junction protein, zonula occludens-1, with the connexin43 mimetic peptide, alphaCT1, reduces VEGF-dependent RPE pathophysiology [J]. J Mol Med, 2017, 95(5): 535-552.
[15]
Urias EA, Urias GA, Monickaraj F, et al. Novel therapeutic targets in diabetic macular edema: beyond VEGF [J]. Vision Res, 2017, 139: 221-227.
[16]
Xiao H, Zhao X, Li S, et al. Risk Factors for subretinal fibrosis after anti-VEGF treatment of myopic choroidal neovascularisation [J]. Br J Ophthalmol, 2021, 105(1): 103-108.
[17]
Ho P, Cahir-McFarland E, Fontenot JD, et al. Harnessing regulatory T cells to establish immune tolerance [J]. Sci Transl Med, 2024, 16(738): eadm8859.
[18]
Proto JD, Doran AC, Gusarova G, et al. Regulatory T cells promote macrophage efferocytosis during inflammation resolution [J]. Immunity, 2018, 49(4): 666-677.
[19]
Lu J, Wu J, Tian J, et al. Role of T Cell-derived exosomes in immunoregulation [J]. Immunol Res, 2018, 66(3): 313-322.
[20]
Chen W, Huang Y, Han J, et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome [J]. Immunol Res, 2016, 64(4): 831-840.
[21]
Das CK, Jena BC, Banerjee I, et al. Exosome as a novel shuttle for delivery of therapeutics across biological barriers [J]. Mol Pharm, 2019, 16(1): 24-40.
[22]
Abu-El-Asrar AM, Nawaz MI, Ahmad A, et al. CD40 ligand-CD40 interaction is an intermediary between inflammation and angiogenesis in proliferative diabetic retinopathy [J]. Int J Mol Sci, 2023, 24(21): 15582.
[23]
Khan A, Roy P, Ley K. Breaking tolerance: the autoimmune aspect of atherosclerosis [J]. Nat Rev Immunol, 2024, 24(9): 670-679.
[24]
Tian Y, Zhang F, Qiu Y, et al. Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells [J]. Nat Biomed Eng, 2021, 5(9): 968-982.
[25]
Moccia F, Dragoni S. The calcium signalling profile of the inner blood-retinal barrier in diabetic retinopathy [J]. Cells, 2025, 14(12): 856.
[26]
Araujo-Pires AC, Vieira AE, Francisconi CF, et al. IL-4/CCL22/CCR4 axis controls regulatory T-cell migration that suppresses inflammatory bone loss in murine experimental periodontitis [J]. J Bone Miner Res, 2015, 30(3): 412-422.
[1] 黄晓芳, 刘澍雨, 黄子荣, 胡艳, 梁家敏, 朱伟民. 软骨细胞来源外泌体对于软骨损伤修复的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(06): 751-758.
[2] 王小双, 阮琼芳, 金冬梅, 韩彦, 曹萍, 李炳辉, 褚志刚. 高糖环境下成纤维细胞分泌CXCL11对人脐静脉内皮细胞迁移的影响及其机制[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(04): 339-346.
[3] 张晓波, 巴特, 黄瑞娟, 王宏宇. 间充质干细胞外泌体改善急性肺损伤机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 81-85.
[4] 曾繁润, 林永勇, 王君. 间充质干细胞外泌体促进创面血管新生机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 86-89.
[5] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[6] 刘咏博, 郭佳. 外泌体在前列腺癌细胞免疫逃逸中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 140-145.
[7] 杨健, 杨璐. 体液外泌体在前列腺癌诊断中的应用前景[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(02): 146-151.
[8] 徐康乔, 张国清, 严智亮, 姜涌斌. 外泌体环状RNA 与肺癌关系[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 334-337.
[9] 李雪铭, 伊诺, 卢智豪, 冯婧, 董健藤, 李健. 人脐带间充质干细胞来源外泌体抑制肝星状细胞活化发挥抗肝纤维化作用的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 148-156.
[10] 张剑豪, 蔡丹文, 蒋辰浩, 张宇君, 韩路, 赵雪刚, 吕行, 萧家麒, 张杰滨, 隋昕, 张英才. 过表达POSTN 的间充质干细胞来源外泌体增强肝脏再生能力[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 65-74.
[11] 梁瑶瑶, 邬绿莹, 陈津. 负载干细胞外泌体水凝胶治疗糖尿病足溃疡的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 112-119.
[12] 罗臻, 韦鹏程, 孙馨, 李照. 肝细胞癌骨转移研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 522-527.
[13] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[14] 陈雨浩, 张楚悦, 绳春佳, 肖拓, 姜波, 蔡广研. 超声微泡辅助间充质干细胞来源外泌体超声引导的肾内递送对大鼠急性肾损伤的治疗作用[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 126-132.
[15] 王军, 陈娟, 刘茜红. 血浆外泌体circLPAR1在胃癌诊断及预后评估中的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 300-304.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?