切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2024, Vol. 14 ›› Issue (01) : 52 -56. doi: 10.3877/cma.j.issn.2095-2007.2024.01.009

综述

神经退行性疾病脱髓鞘病变及扩散张量成像检测技术的研究进展
张莉1,(), 左晓玲2, 王宁利1   
  1. 1. 100005 首都医科大学附属北京同仁医院 北京市眼科研究所 北京市眼科学与视觉科学重点实验室
    2. 054099 河北省邢台市中心医院肝胆外科
  • 收稿日期:2024-01-03 出版日期:2024-02-28
  • 通信作者: 张莉
  • 基金资助:
    国家自然科学基金重点项目(82130029)

Advances on demyelination changes in neurodegenerative diseases and the diffusion tensor imaging

Li Zhang1,(), Xiaoling Zuo2, Ningli Wang1   

  1. 1. Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
    2. Departmentof Hepatobiliary Surgery, Xingtai Central Hospital, Xingtai 054099, China
  • Received:2024-01-03 Published:2024-02-28
  • Corresponding author: Li Zhang
引用本文:

张莉, 左晓玲, 王宁利. 神经退行性疾病脱髓鞘病变及扩散张量成像检测技术的研究进展[J]. 中华眼科医学杂志(电子版), 2024, 14(01): 52-56.

Li Zhang, Xiaoling Zuo, Ningli Wang. Advances on demyelination changes in neurodegenerative diseases and the diffusion tensor imaging[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(01): 52-56.

神经轴突的脱髓鞘改变是神经退行性疾病的早期病理改变,在多发性硬化和青光眼等神经疾病的发病机制中发挥着重要作用。脱髓鞘发生改变后,神经轴突会诱发轴突变性坏死,神经传导功能障碍,促进神经退行性疾病进展。脱髓鞘后的髓鞘重建可以使再生的神经轴突恢复正常的神经传导功能,防止轴突持续损伤。髓鞘重建促进神经再生的机制有望成为治疗神经退行性疾病的新靶点。应用扩散张量成像(DTI)技术可发现与神经退行性疾病的髓鞘结构和功能改变相关的敏感性与特异性指标,能为疾病进展监测、疾病预后预测及治疗的反应提供参考。

Demyelination of axons is an early pathological change of neurodegenerative diseases, which plays an important role in the pathogenesis of multiple sclerosis, glaucoma and other neurological diseases. After demyelinating changes, pathological changes occurred in the structure and function of the nerve axons, including degeneration and necrosis of axons, dysfunction of nerve conduction, and neurodegenerative diseases. After demyelination, myelination reconstruction can achieve rapid transmission of nerve impulses and prevent continuous axonal damage. The myelin formation during axonal regeneration is likely to promote myelin and nerve regeneration, which has become a new target for treating neurodegenerative diseases. The application of diffusion tensor imaging (DTI) is helpful to identify sensitive and specific indicators related to the structural and functional changes of the myelin sheath in degenerative diseases, which could provide the reference for monitoring disease progression, predicting disease prognosis, and responding to treatment.

[1]
Freeman SA, Desmazières A, Fricker D, et al. Mechanisms of sodium channel clustering and its influence on axonal impulse conduction[J]. Cell Mol Life Sci, 2016, 73(4): 723-735.
[2]
Stadelmann C, Timmler S, Barrantes-Freer A, et al. Myelin in the central nervous system: structure, function, and pathology[J]. Physiol Rev, 2019, 99(3): 1381-1431.
[3]
Smith MA, Plyler ES, Dengler-Crish CM, et al. Nodes of ranvier in glaucoma[J]. Neuroscience, 2018, 390: 104-118.
[4]
Mädler B, Drabycz SA, Kolind SH, et al. Is diffusion anisotropy an accurate monitor of myelination? Correlation of multicomponent T2 relaxation and diffusion tensor anisotropy in human brain[J]. Magn Reson Imaging, 2008, 26(7): 874-888.
[5]
Mathys H, Davila-Velderrain J, Peng Z, et al. Single-cell transcriptomic analysis of Alzheimer′s disease[J]. Nature, 2019, 570(7761): 332-337.
[6]
Jennings AR, Carroll WM. Oligodendrocyte lineage cells in chronic demyelination of multiple sclerosis optic nerve[J]. Brain Pathol, 2015, 25(5): 517-530.
[7]
Philips T, Rothstein JD. Oligodendroglia: metabolic supporters of neurons[J]. J Clin Invest, 2017, 127(9): 3271-3280.
[8]
Ngamsombat C, Tian Q, Fan Q, et al. Axonal damage in the optic radiation assessed by white matter tract integrity metrics is associated with retinal thinning in multiple sclerosis[J]. Neuroimage Clin, 2020, 27: 102293.
[9]
Alexander AL, Lee JE, Lazar M, et al. Diffusion tensor imaging of the brain[J]. Neurotherapeutics, 2007, 4(3): 316-329.
[10]
Song SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water[J]. Neuroimage, 2002, 17(3): 1429-1436.
[11]
Alexander AL, Lee JE, Lazar M, et al. Diffusion tensor imaging of the corpus callosum in Autism[J]. Neuroimage, 2007, 34(1): 61-73.
[12]
Miller N, Liu Y, Krivochenitser R, et al. Linking neural and clinical measures of glaucoma with diffusion magnetic resonance imaging (dMRI) [J]. PLoS One, 2019, 14(5): e0217011.
[13]
Ngamsombat C, Tian Q, Fan Q, et al. Axonal damage in the optic radiation assessed by white matter tract integrity metrics is associated with retinal thinning in multiple sclerosis[J]. Neuroimage Clin, 2020, 27: 102293.
[14]
Choi SJ, Lim KO, Monteiro I, et al. Diffusion tensor imaging of frontal white matter microstructure in early Alzheimer′s disease: a preliminary study[J]. J Geriatr Psychiatry Neurol, 2005, 18(1): 12-19.
[15]
Gross DW, Concha L, Beaulieu C. Extratemporal white matter abnormalities in mesial temporal lobe epilepsy demonstrated with diffusion tensor imaging[J]. Epilepsia, 2006, 47(8): 1360-1363.
[16]
Assaf Y, Ben-Sira L, Constantini S, et al. Diffusion tensor imaging in hydrocephalus: initial experience[J]. AJNR Am J Neuroradiol, 2006, 27(8): 1717-1724.
[17]
Moeller FG, Hasan KM, Steinberg JL, et al. Diffusion tensor imaging eigenvalues: preliminary evidence for altered myelin in cocaine dependence[J]. Psychiatry Res, 2007, 154(3): 253-258.
[18]
Alexander AL, Lee JE, Lazar M, et al. Diffusion tensor imaging of the corpus callosum in Autism[J]. Neuroimage, 2007, 34(1): 61-73.
[19]
Alexander AL, Lee JE, Lazar M, et al. Diffusion tensor imaging of the brain[J]. Neurotherapeutics, 2007, 4(3): 316-329.
[20]
Alexopoulos GS, Kiosses DN, Choi SJ, et al. Frontal white matter microstructure and treatment response of late-life depression: a preliminary study[J]. Am J Psychiatry, 2002, 159(11): 1929-1932.
[21]
Raffaele S, Boccazzi M, Fumagalli M. Oligodendrocyte dysfunction in amyotrophic lateral sclerosis: mechanisms and therapeutic perspectives[J]. Cells, 2021, 10(3): 565.
[22]
Chang ST, Xu J, Trinkaus K, et al.Optic nerve diffusion tensor imaging parameters and their correlation with optic disc topography and disease severity in adult glaucoma patients and controls[J]. J Glaucoma, 2014, 23(8): 513-520.
[23]
Li M, Ke M, Song Y, et al. Diagnostic utility of central damage determination in glaucoma by magnetic resonance imaging: An observational study[J]. Exp Ther Med, 2019, 17(3): 1891-1895.
[24]
Zhang QJ, Wang D, Bai ZL, et al. Diffusion tensor imaging of optic nerve and optic radiation in primary chronic angle-closure glaucoma using 3T magnetic resonance imaging[J]. Int J Ophthalmol, 2015, 8(5): 975-979.
[25]
Nucci C, Garaci F, Altobelli S, et al. Diffusional kurtosis imaging of white matter degeneration in glaucoma[J]. J Clin Med, 2020, 9(10): 3122.
[26]
Reinehr S, Reinhard J, Gandej M, et al. Simultaneous complement response via lectin pathway in retina and optic nerve in an experimental autoimmune glaucoma model[J]. Front Cell Neurosci, 2016, 10: 140.
[27]
Rose J, Brian C, Woods J, et al. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival[J]. Toxicology, 2017, 391(11): 109-115.
[28]
Philips T, Rothstein JD. Oligodendroglia: metabolic supporters of neurons[J]. J Clin Invest, 2017, 127(9): 3271-3280.
[29]
Kimura A, Namekata K, Guo X, et al. Targeting oxidative stress for treatment of glaucoma and optic neuritis[J]. Oxid Med Cell Longev, 2017, PMID: 2817252.
[30]
Spaas J, van-Veggel L, Schepers M, et al. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders[J]. Cell Mol Life Sci, 2021, 78(10): 4615-4637.
[31]
Ljubisavljevic S. Oxidative stress and neurobiology of demyelination[J]. Mol Neurobiol, 2016, 53(1): 744-758.
[32]
Minchenberg SB, Massa PT. The control of oligodendrocyte bioenergetics by interferon-gamma (IFN-γ) and Src homology region 2 domain-containing phosphatase-1 (SHP-1) [J]. J Neuroimmunol, 2019, 331: 46-57.
[33]
Luo F, Herrup K, Qi X, et al. Inhibition of Drp1 hyper-activation is protective in animal models of experimental multiple sclerosis[J]. Exp Neurol, 2017, 292: 21-34.
[34]
Balabanov R, Strand K, Goswami R, et al. Interferon-gamma-oligodendrocyte interactions in the regulation of experimental autoimmune encephalomyelitis[J]. J Neurosci, 2007, 27(8): 2013-2024.
[35]
Kunkl M, Frascolla S, Amormino C, et al. T helper cells: the modulators of inflammation in multiple sclerosis[J]. Cells, 2020, 9(2): 482.
[36]
Ambrosius W, Michalak S, Kozubski W, et al. Myelin oligodendrocyte glycoprotein antibody-associated disease: current insights into the disease pathophysiology, diagnosis and management[J]. Int J Mol Sci, 2020, 22(1): 100.
[37]
Madsen PM, Pinto M, Patel S, et al. Mitochondrial DNA double-strand breaks in oligodendrocytes cause demyelination, axonal injury, and CNS inflammation[J]. J Neurosci, 2017, 37(42): 10185-10199.
[38]
Miller N, Liu Y, Krivochenitser R, et al. Linking neural and clinical measures of glaucoma with diffusion magnetic resonance imaging (dMRI) [J]. PLoS One, 201914(5): e0217011.
[39]
Schmierer K, Wheeler-Kingshott CA, Boulby PA, et al. Diffusion tensor imaging of post mortem multiple sclerosis brain[J]. Neuroimage, 2007, 35(2): 467-477.
[40]
Schmierer K, Wheeler-Kingshott CA, Tozer DJ, et al. Quantitative magnetic resonance of postmortem multiple sclerosis brain before and after fixation[J]. Magn Reson Med, 2008, 59(2): 268-277.
[41]
Harsan LA, Poulet P, Guignard B, et al. Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging[J]. J Neurosci Res, 2006, 83(3): 392-402.
[42]
Yung A, Poon G, Qiu DQ, et al. White matter volume and anisotropy in preterm children: a pilot study of neurocognitive correlates[J]. Pediatr Res, 2007, 61(6): 732-736.
[43]
Müller MJ, Greverus D, Weibrich C, et al. Diagnostic utility of hippocampal size and mean diffusivity in amnestic MCI[J]. Neurobiol Aging, 2007, 28(3): 398-403.
[44]
Alexopoulos GS, Kiosses DN, Choi SJ, et al. Frontal white matter microstructure and treatment response of late-life depression: a preliminary study[J]. Am J Psychiatry, 2002, 159(11): 1929-1932.
[45]
O′Sullivan M, Morris RG, Huckstep B, et al. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis[J]. J Neurol Neurosurg Psychiatry, 2004, 75(3): 441-447.
[46]
Holtmannspötter M, Peters N, Opherk C, et al. Diffusion magnetic resonance histograms as a surrogate marker and predictor of disease progression in CADASIL: a two-year follow-up study[J]. Stroke, 2005, 36(12): 2559-2565.
[47]
Stinear CM, Barber PA, Smale PR, et al. Functional potential in chronic stroke patients depends on corticospinal tract integrity[J]. Brain, 2007, 130(Pt1): 170-180.
[48]
Lin X, Tench CR, Morgan PS, et al. ′Importance sampling′ in MS: use of diffusion tensor tractography to quantify pathology related to specific impairment[J]. J Neurol Sci, 2005, 237(1-2): 13-19.
[49]
Lazar M, Weinstein DM, Tsuruda JS, et al. White matter tractography using diffusion tensor deflection[J]. Hum Brain Mapp, 2003, 18(4): 306-321.
[50]
Fieremans E, Jensen JH, Helpern JA. White matter characterization with diffusional kurtosis imaging[J]. Neuroimage, 2011, 58(1): 177-188.
[51]
Veraart J, Sijbers J, Sunaert S, et al. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls[J]. Neuroimage, 2013, 81: 335-346.
[52]
De-Kouchkovsky I, Fieremans E, Fleysher L, et al. Quantification of normal-appearing white matter tract integrity in multiple sclerosis: a diffusion kurtosis imaging study[J]. J Neurol, 2016, 263(6): 1146-1155.
[53]
Fieremans E, Benitez A, Jensen JH, et al. Novel white matter tract integrity metrics sensitive to Alzheimer disease progression[J]. AJNR Am J Neuroradiol, 2013, 34(11): 2105-2112.
[54]
Khachaturian MH, Wisco JJ, Tuch DS. Boosting the sampling efficiency of q-Ball imaging using multiple wavevector fusion[J]. Magn Reson Med, 2007, 57(2): 289-296.
[55]
Wu YC, Alexander AL. Hybrid diffusion imaging[J]. Neuroimage, 2007, 36(3): 617-629.
[56]
Behrens TE, Berg HJ, Jbabdi S, et al. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? [J]. Neuroimage, 2007, 34(1): 144-155.
[57]
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440.
[1] 张恒, 曲海波. 宫颈癌淋巴结转移的影像学诊断[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 503-509.
[2] 廖雄宇, 邱坤银, 覃丽君, 何展文. 儿童髓鞘少突胶质细胞糖蛋白抗体相关炎性脱髓鞘疾病临床分析[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(03): 311-320.
[3] 卢如意, 朱恒凯, 刘相艳, 郑树森. 器官移植术后中枢神经系统脱髓鞘病变研究进展[J]. 中华移植杂志(电子版), 2021, 15(02): 124-127.
[4] 阎晨, 刘涛, 宣斐. 超声引导联合全麻对老年肺癌肺叶切除术患者NGF-β、MBP及术后转归分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 192-196.
[5] 雷双银, 习剑鑫, 贺羽轩, 姚静宜, 石博雅, 马杰, 池光范, 李美英. 间充质干细胞源外泌体在神经退行性疾病治疗中的应用与进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 93-100.
[6] 徐康, 夏立建, 刘玉林, 于鹏, 陈景波. 炎性肠病合并视神经脊髓炎谱系疾病一例[J]. 中华结直肠疾病电子杂志, 2021, 10(01): 105-107.
[7] 张卓媛, 杨二万, 田志成, 包明冬, 罗鹏. 慢性创伤性脑病的研究新进展[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 360-366.
[8] 麦麦提力·米吉提, 李云雷, 吴昊, 李彦东, 沈宇晟, 吕明月, 朱国华. 弥散张量成像传导束重建技术指导高级别胶质瘤切除的临床研究[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 101-105.
[9] 刘安民, 曹宁, 谢佳芯, 封亚平. 多模态影像学技术在意识障碍诊疗中的应用[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 216-219.
[10] 惠子欣, 张军. 弥散张量成像对重复经颅磁刺激治疗缺血性脑卒中偏瘫患者的疗效评估[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 204-209.
[11] 庄旭东, 王心睿. 组织透明化技术在非人灵长类神经退行性疾病研究中的应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(06): 370-373.
[12] 杨利娟, 赵鹏浩. 针刺治疗渗透性脱髓鞘综合征验案[J]. 中华针灸电子杂志, 2022, 11(02): 69-70.
[13] 袁健瑜, 梁铭垚, 何祎, 单鸿. 骨架化弥散指数在识别年龄相关鼠脑微结构改变中的应用效果[J]. 中华介入放射学电子杂志, 2024, 12(02): 114-119.
[14] 窦忠霞, 宋瑞霞, 冯万禹, 苏学文. 氯倍他索对新生大鼠脑白质损伤的治疗作用研究[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 5-9.
[15] 李健, 张京芬, 马妮娅, 郭晓红, 刘国荣. 丁苯酞对一氧化碳中毒迟发性脑病的临床疗效及磁共振脑白质病变的影响[J]. 中华脑血管病杂志(电子版), 2022, 16(03): 182-187.
阅读次数
全文


摘要