[1] |
Zhang X, Saaddine JB, Chou CF, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008[J]. Journal of the American Medical Association, 2010, 304(6): 649-656.
|
[2] |
Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35(3): 556-64.
|
[3] |
Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035[J]. Diabetes Res Clin Pract, 2014, 103: 137-149.
|
[4] |
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843.
|
[5] |
Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review[J] JAMA, 2007, 298: 902-916.
|
[6] |
Bandello F, Parodi MB, Lanzetta B. Diabetic Macular Edema[J]. Dev Ophthalmol, 2017, 58: 102-138.
|
[7] |
Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema. ETDRS Report No. 1[J]. Arch Ophthalmol, 1985,103(12): 1796-806.
|
[8] |
Scott IU, Danis RP, Bressler SB, et al. Effect of focal/grid photocoagulation on visual acuity and retinal thickening in eyes with non-center-involved diabetic macular edema[J]. Retina, 2009, 29: 613-617.
|
[9] |
Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, et al. Guidelines for the management of diabetic macular edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica, 2017, 237(4): 185-222.
|
[10] |
Parodi BM, Iacono P, Cascavilla M, et al. A Pathogenetic classification of diabetic macular edema[J]. Ophthalmic Res, 2018, 60(1): 23-28.
|
[11] |
Kinyoun J, Barton F, Fisher M, et al. Detection of diabetic macular edema. Ophthalmoscopy versus photography-Early Treatment Diabetic Retinopathy Study report number 5. The ETDRS Research Group[J]. Ophthalmology, 1989, 96(6): 746-750.
|
[12] |
Browning DJ, Altaweel MM, Bressler NM, et al. Diabetic macular edema: what is focal and what is diffuse?[J]. Am J Ophthalmol, 2008, 146(5): 649-655.
|
[13] |
Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions[J]. Prog Retin Eye Res, 2013, 34(5): 19-48.
|
[14] |
Daruich A, Matet A, Moulin A, et al. Mechanisms of macular edema: beyond the surface[J]. Progress in Retinal and Eye Research, 2018, 63(3): 20-68.
|
[15] |
Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001, 414: 813-820.
|
[16] |
Romero AP, Baget BM, Pareja RA, et al. Diabetic macular edema pathophysiology: vasogenic versus inflammatory[J]. J Diabetes Res, 2016: 2156273.
|
[17] |
Reichenbach A, Bringmann A. New functions of Müller cells[J]. Glia, 2013, 61(5): 651-678.
|
[18] |
Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina[J]. Prog Retin Eye Res, 2009, 28(5): 348-368.
|
[19] |
Sorrentino FS, Allkabes M, Salsini G, et al. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy[J]. Life Sciences, 2016, 162: 54-59.
|
[20] |
Bringmann A, Wiedemann P. Müller glial cells in retinal disease[J]. Ophthalmologica, 2012, 227(1): 1-18.
|
[21] |
Wang J, Xu X, Elliott MH, et al. Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage[J]. Diabetes, 2010, 59(9): 2297-2305.
|
[22] |
Sonoda S, Sakamoto T, Shirasawa M, et al. Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema[J]. Investigative Ophthalmology & Visual Science, 2013, 54(8): 5367-5374.
|
[23] |
Noma H, Mimura T, Yasuda K, et al. Role of inflammation in diabetic macular edema[J]. Ophthalmologica, 2014, 232(3): 127-135.
|
[24] |
Vincent JA, Mohr S. Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia[J]. Diabetes, 2007, 56(1): 224-230.
|
[25] |
Rangasamy S, McGuire PG, Franco NC, et al. Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy[J]. PLoS One, 2014, 9(10) : e108508.
|
[26] |
Sonoda S, Sakamoto T, Yamashita T, et al. Retinal morphologic changes and concentrations of cytokines in eyes with diabetic macular edema[J]. Retina, 2014, 13(4): 741-748.
|
[27] |
Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy[J]. Exp Diabetes Res, 2007: 43603.
|
[28] |
Xu HZ, Le YZ. Significance of outer blood-retina barrier breakdown in diabetes and ischemia[J]. Invest Ophthalmol Vis Sci, 2011, 52: 2160-2164.
|
[29] |
Samuels IS, Lee CA, Petrash JM, et al. Exclusion of aldose reductase as a mediator of ERG deficits in a mouse model of diabetic eye disease[J]. Vis Neurosci, 2012, 29(6): 267-274.
|
[30] |
Beasley S, et al. Caspase-14 expression impairs retinal pigment epithelium barrier function: potential role in diabetic macular edema[J]. Biomed Res Int, 2014: 417986.
|
[31] |
Simó R, Villarroel M, Corraliza L, et al. The retinal pigment epithelium: something morethan a constituent of the blood-retinal barrier--implications for the pathogenesis of diabetic retinopathy[J]. J Biomed Biotechnol, 2010: 190724.
|
[32] |
Querques G. Enhanced depth imaging optical coherence tomography in type 2 diabetes[J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6017-6024.
|
[33] |
Lutty GA, Cao J, McLeod DS. Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid[J]. Am J Pathol, 1997, 151(3): 707-714.
|
[34] |
Otani T, Kishi S, Maruyama Y. Patterns of diabetic macular edema with optical coherence tomography[J]. Am J Ophthalmol, 1999, 127(6): 688-693.
|
[35] |
Kim BY, Smith SD, Kaiser PK, et al. Optical Coherence Tomographic Patterns of Diabetic Macular Edema[J]. Am J Ophthalmol, 2006, 142(3): 405-412.
|
[36] |
Panozzo G, Parolini B, Gusson E, et al. Diabetic macular edema: an OCT-based classification[J]. Semin Ophthalmol, 2004, 19(1-2): 13-20.
|
[37] |
Koleva GDN, Sivkova NP. Types of diabetic macular edema assessed by optical coherence tomography[J]. Folia Med, 2008, 50(3): 30-38.
|
[38] |
Figueras RM, Molins B, Sala PA, et al. Peripheral blood metabolic and inflammatory factors as biomarkers to ocular findings in diabetic macular edema[J]. PLoS One, 2017, 12(3): e0173865.
|
[39] |
Spaide R. Retinal vascular cystoid macular edema: review and new theory[J]. Retina, 2016, 36(10): 1823-1842.
|
[40] |
Kim T, Shin H, Kim S, et al. Factors influencing intravitreal bevacizumab and triamcinolone treatment in patients with diabetic macular edema[J]. European Journal of Ophthalmology, 2017, 27(6): 746-750.
|
[41] |
Kim J, Lee D, Joe S, et al. Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients[J]. Investigative Ophthalmology & Visual Science, 2013, 54(5): 3378-3384.
|
[42] |
Giocanti AA, Hrarat L, Qu LM, et al. Functional and anatomical outcomes in patients with serous retinal detachment in diabetic macular edema treated with ranibizumab[J] Investigative Ophthalmology & Visual Science, 2017, 58(2): 797-800.
|
[43] |
Kaiser PK, Riemann CD, Sears JE, et al. Macular traction detachment and diabetic macular edema associated with posterior hyaloidal traction[J]. Am J Ophthalmol2001,131(1): 44-49.
|
[44] |
Yamamoto S, Yamamoto T, Hayashi M, et al. Morphological and functional analyses of diabetic macular edema by optical coherence tomography and multifocal electroretinograms[J]. Graefe's Arch Clin Ophthalmol, 2001, 239(2): 96-101.
|
[45] |
Helmy YM, Atta AHR. Optical coherence tomography classification of diabetic cystoid macular edema[J]. Clin Ophthalmol, 2013, 7: 1731-1737.
|
[46] |
Ozcaliskan S, Balci S, Karasu B, et al. Effect of optical coherence tomography patterns on one-year outcomes of aflibercept therapy for diabetic macular edema[J]. J Coll Physicians Surg Pak, 2020, 30(2): 149-153.
|
[47] |
Arf S, Sayman I, Hocaoglu M, et al. Spectral domain optical coherence tomography classification of diabetic macular edema: a new proposal to clinical practice[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(6): 1165-1172.
|
[48] |
Sophie R, Lu N, Campochiaro PA. Predictors of functional and anatomic outcomes in patients with diabetic macular edema treated with ranibizumab[J]. Ophthalmology, 2015, 122(7): 1395-1401.
|
[49] |
Korobelnik JF, Lu C, Katz TA, et al. Effect of baseline subretinal fluid on treatment outcomes in vivid-DME and vista-DME studies[J]. Ophthalmol Retina, 2019, 3: 663-669.
|
[50] |
Panozzo G, Cicinelli MV, Augustin AJ, et al. An optical coherence tomography-based grading of diabetic maculopathy proposed by an international expert panel: The European School for Advanced Studies in Ophthalmology classification[J]. Eur J Ophthalmol, 2020, 30(1): 8-18.
|
[51] |
Ophir A, Martinez MR, Mosqueda P, et al. Vitreous traction and epiretinal membranes in diabetic macular oedema using spectral-domain optical coherence tomography[J]. Eye, 2010, 24: 1545-1553.
|
[52] |
Mikhail M, Stewart S, Seow F, et al. Vitreomacular interface abnormalities in patients with diabetic macular oedema and their implications on the response to anti-VEGF therapy[J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(8): 1411-1418.
|
[53] |
Kang SW, Park CY, Ham DI. The correlation between fluorescein angiographic and optical coherence tomographic features in clinically significant diabetic macular edema[J]. Am J Ophthalmol, 2004, 137(2): 313-322.
|
[54] |
Chang CK, Cheng CK, Peng CH. The incidence and risk factors for the development of vitreomacular interface abnormality in diabetic macular edema treated with intravitreal injection of anti-VEGF[J]. Eye (Lond), 2017, 31(5): 762-770.
|
[55] |
Yoon D, Rusu I, and Barbazetto I. Reduced effect of antivascular endothelial growth factor agents on diabetics with vitreomacular interface abnormalities[J]. Int Ophthalmol, 2014, 34(4): 817-823, 47.
|
[56] |
Hagenau F, Vogt D, Ziada J, et al. Vitrectomy for Diabetic Macular Edema: Optical Coherence Tomography Criteria and Pathology of the Vitreomacular Interface[J]. Am J Ophthalmol, 2019, 200(4): 34-46.
|
[57] |
Nicholson L, Ramu J, Triantafyllopoulou I, et al. Diagnostic accuracy of disorganization of the retinal inner layers in detecting macular capillary non-perfusion in diabetic retinopathy[J]. Clin Exp Ophthalmol, 2015, 43(8): 735-741.
|
[58] |
Sun JK, Lin MM, Lammer J, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema[J]. JAMA Ophthalmol, 2014, 132(11): 1309-1316.
|
[59] |
Radwan SH, Soliman AZ, Tokarev J, et al. Association of disorganization of retinal inner layers with vision after resolution of center-involved diabetic macular edema[J]. JAMA Ophthalmol, 2015, 133(7): 820-825.
|
[60] |
Yeung L, Lima VC, Garcia P, et al. Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema[J]. Ophthalmology, 2009, 116(6): 1158-1167.
|
[61] |
Balaratnasingam C, Inoue M, Ahn S, et al. Visual acuity is correlated with the area of the foveal avascular zone in diabetic retinopathy and retinal vein occlusion[J]. Ophthalmology, 2016, 123(11): 2352-2367.
|
[62] |
Moein HR, Novais EA, Rebhun CB, et al. Optical coherence tomography angiography to detect macular capillary ischemia in patients with inner retinal changes after resolved diabetic macular edema[J]. Retina, 2018, 38(12): 2277-2284.
|
[63] |
Grewal DS, Hariprasad SM, Jaffe GJ. Role of disorganization of retinal inner layers as an optical coherence tomography biomarker in diabetic and uveitic macular edema[J].Ophthalmic Surg Lasers Imaging Retina, 2017, 48(4): 282-288.
|
[64] |
Sakata K, Funatsu H, Harino S, et al. Relationship of macular microcirculation and retinal thickness with visual acuity in diabetic macular edema[J]. Ophthalmology, 2007, 114(11): 2061-2069.
|
[65] |
Sarraf D, Rahimy E, Fawzi AA, et al. Paracentral acute middle maculopathy: a new variant of acute macular neuroretinopathy associated with retinal capillary ischemia[J]. JAMA Ophthalmol, 2013, 131(10): 1275-1287.
|
[66] |
Sun JK, Radwan SH, Soliman AZ, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema[J]. Diabetes, 2015, 64(7): 2560-2570.
|
[67] |
Coughlin BA, Feenstra DJ, Mohr S. Müller cells and diabetic retinopathy[J]. Vis Res, 2017, 139: 93-100.
|
[68] |
Deak GG, Bolz M, Ritter M, et al. A systematic correlation between morphology and functional alterations in diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2010, 51(12): 6710-6714.
|
[69] |
Reznicek L, Cserhati S, Seidensticker F, et al. Functional and morphological changes in diabetic macular edema over the course of anti-vascular endothelial growth factor treatment[J]. Acta Ophthalmol, 2013, 91(7): e529-e536.
|
[70] |
Karst S, Mitsch C, Scholda C, et al. Detailed analysis of retinal morphology in patients with diabetic macular edema (DME) randomized to ranibizumab or triamcinolone treatment - reply to the letter to the editor[J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(5): 1039-1040.
|
[71] |
Jain A, Saxena S, Khanna VK, et al. Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus[J]. Mol Vis, 2013, 19: 1760-1768.
|
[72] |
Omri S, Omri B, Savoldelli M, et al. The outer limiting membrane (OLM) revisited: clinical implications[J]. Clin Ophthalmol, 2010, 4: 183-195.
|
[73] |
Das R, Spence G, Hogg RE, et al. Disorganization of inner retina and outer retinal morphology in diabetic macular edema[J]. JAMA Ophthalmol, 2018, 136(2): 202-208.
|
[74] |
Sharma SR, Saxena S, Mishra N, et al. The association of grades of photoreceptor inner segment-ellipsoid band disruption with severity of retinopathy in type 2 diabetes mellitus[J]. J Case Rep Stud, 2014, 2: 205.
|
[75] |
Murakami T, Nishijima K, Sakamoto A, et al. Association of pathomorphology, photoreceptor status, and retinal thickness with visual acuity in diabetic retinopathy[J]. Am J Ophthalmol, 2011, 151(2): 310-317.
|
[76] |
Shin HJ, Lee SH, Chung H, et al. Association between photoreceptor integrity and visual outcome in diabetic macular edema[J]. Graefes Arch Clin Exp Ophthalmol, 2012, 250(1): 61-70.
|
[77] |
Maheshwary AS, Oster SF, Yuson RM, et al. The association between percent disruption of the photoreceptor inner segment/outer segment and visual acuity in diabetic macular edema[J]. Am J Ophthalmol, 2010, 150(1): 63-67.
|
[78] |
Scarinci F, Nesper PL, Fawzi AA. Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia[J]. Am J Ophthalmol, 2016, 168(4): 129-138.
|
[79] |
Yanyali A, Bozkurt KT, Macin A, et al. Quantitative assessment of photoreceptor layer in eyes with resolved edema after pars plana vitrectomy with internal limiting membrane removal for diabetic macular edema[J]. Ophthalmologica, 2011, 226(2): 57-63.
|
[80] |
Byeon S, Chu Y, Hong Y, et al. New insights into the pathoanatomy of diabetic macular edema: angiographic patterns and optical coherence tomography[J]. Retina, 2012, 32(6): 1087-1099.
|
[81] |
Gupta A, Raman R, Mohana K, et al. Communications between intraretinal and subretinal space on optical coherence tomography of neurosensory retinal detachment in diabetic macular edema[J]. Oman J Ophthalmol, 2013, 6(3): 183-188.
|
[82] |
Gaucher D, Sebah C, Erginay A, et al. Optical coherence tomography features during the evaluation of serous retinal detachment in patients with diabetic macular edema[J]. Am J Ophthalmol, 2008, 145(2): 289-296.
|
[83] |
Campos A, Campos EJ, Martins J, et al. Viewing the choroid: where we stand, challenges and contradictions in diabetic retinopathy and diabetic macular oedema[J]. Acta Ophthalmol, 2017, 95(5): 446-459.
|
[84] |
Vujosevic S, Torresin T, Berton M, et al. Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphologic and functional entities[J]. Am J phthalmol, 2017, 181(9): 149-155.
|
[85] |
Gerendas BS, Prager S, Deak G, et al. Predictive imaging biomarkers relevant for functional and anatomical outcomes during ranibizumab therapy of diabetic macular oedema[J]. Br J Ophthalmol, 2018, 102(2): 195-203.
|
[86] |
Davoudi S, Papavasileiou E, Roohipoor R, et al. Optical coherence tomography characteristics of macular edema and hard exudates and their association with lipid serum levels in type 2 diabetes[J]. Retina, 2016, 36(9): 1622-1629.
|
[87] |
Ota M, Nishijima K, Sakamoto A, et al. Optical coherence tomographic evaluation of foveal hard exudates in patients with diabetic maculopathy accompanying macular detachment[J]. Ophthalmology, 2010, 117(10): 1996-2002.
|
[88] |
Vujosevic S, Bini S, Torresin T, et al. Hyperreflective retinal spots in normal and diabetic eyes: B-scan and en face spectral domain optical coherence tomography evaluation[J]. Retina, 2017, 37(6): 1092-1103.
|
[89] |
Uji A, Murakami T, Nishijima K, et al. Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema[J]. Am J Ophthalmol, 2012, 153(4): 710-717.
|
[90] |
Vujosevic S, Bini S, Midena G, et al. Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT[J]. J Diabetes Res, 2013: 5.
|
[91] |
Benedetto UD, Sacconi R, Pierro L, et al. Optical coherence tomographic hyperreflective foci in early stages of diabetic retinopathy[J]. Retina, 2015, 35(3): 449-453.
|
[92] |
Lee H, Jang H, Choi YA, et al. Association between soluble CD14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema[J]. Investigative Ophthalmology & Visual Science, 2018, 59(2): 715-721.
|
[93] |
Zur D, Iglicki M, Busch C, et al. OCT biomarkers as functional outcome predictors in diabetic macular edema treated with dexamethasone implant[J]. Ophthalmology, 2018, 125(2): 267-275.
|
[94] |
Chatziralli I, Theodossiadis P, Parikakis E, et al. Dexamethasone intravitreal implant in diabetic macular edema: real-life data from a prospective study and predictive factors for visual outcome[J]. Diabetes Ther, 2017, 8(6): 1393-1404.
|
[95] |
Hwang HS, Chae JB, Kim JY, et al. Association between hyperreflective dots on spectral-domain optical coherence tomography in macular edema and response to treatment[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5958-5967.
|
[96] |
Vujosevic S, Berton M, Bini S, et al. Hyperreflective retinal spots and visual function after anti-vascular endothelial growth factor treatment in center-involving diabetic macular edema[J]. Retina, 2016, 36(7): 1298-1308.
|
[97] |
Framme C, Schweizer P, Imesch M, et al. Behavior of SD-OCT-detected hyperreflective foci in the retina of anti-VEGF-treated patients with diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5814-5318.
|