切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2021, Vol. 11 ›› Issue (01) : 1 -7. doi: 10.3877/cma.j.issn.2095-2007.2021.01.001

述评

关注糖尿病黄斑水肿的光学相干断层扫描分型及相关影像特征
史雪辉1, 张丛1, 魏文斌1,()   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科学与视觉科学重点实验室 工信部医学人工智能研究与验证实验室
  • 收稿日期:2020-12-13 出版日期:2021-02-28
  • 通信作者: 魏文斌
  • 基金资助:
    国家自然科学基金(81570891); 北京市医院管理局"登峰"人才培养计划(DFL20150201)

Pay attention to OCT-based classification and features of diabetic macular edema

Xuehui Shi1, Cong Zhang1, Wenbin Wei1,()   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab., Research and Verification Laboratory of Medical Artificial Intelligence of MIIT, Beijing 100730, China
  • Received:2020-12-13 Published:2021-02-28
  • Corresponding author: Wenbin Wei
引用本文:

史雪辉, 张丛, 魏文斌. 关注糖尿病黄斑水肿的光学相干断层扫描分型及相关影像特征[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 1-7.

Xuehui Shi, Cong Zhang, Wenbin Wei. Pay attention to OCT-based classification and features of diabetic macular edema[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2021, 11(01): 1-7.

糖尿病性视网膜病变(DR)是目前成人第一致盲眼病。其中,糖尿病性黄斑水肿(DME)是导致糖尿病患者中心视觉功能严重障碍的主要原因。DME不同表现及分型对确定其严重程度及选择治疗方式至关重要。光学相干断层成像(OCT)是目前测量视网膜厚度,评估DME形态及微细结构的主要检查手段。DME的OCT检查有多种形态表现及伴随影像,各种表现反映不同的病理基础。为此,笔者强调通过DME形成机制,理解DME病理基础上的OCT分型方法,掌握相关影像特征及其临床意义,为判断疾病严重程度、选择治疗方案及疾病的预后提供更明确的信息。

Diabetic retinopathy (DR) is the most common cause of blindness in adults. Among of them, diabetic macular edema (DME) is the major cause of severely impaired central vision for diabetic patients. Different manifestations and classifications of DME are important to determine the severity, outcome assessments and treatment of DME. Optical coherence tomography (OCT) is a main imaging method to measure retinal thickness and evaluate the morphology and microstructure of DME. The OCT-based classifications and related image features of DME is available to map different pathological basis. Therefore, we stress the importance of DME types and associated features on the pathological mechanism of DME in this paper, aiming to determine the severity of the disease, select optimal treatment, and may provide information for the prognosis of the disease.

[1]
Zhang X, Saaddine JB, Chou CF, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008[J]. Journal of the American Medical Association, 2010, 304(6): 649-656.
[2]
Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35(3): 556-64.
[3]
Guariguata L, Whiting DR, Hambleton I, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035[J]. Diabetes Res Clin Pract, 2014, 103: 137-149.
[4]
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843.
[5]
Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review[J] JAMA, 2007, 298: 902-916.
[6]
Bandello F, Parodi MB, Lanzetta B. Diabetic Macular Edema[J]. Dev Ophthalmol, 2017, 58: 102-138.
[7]
Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema. ETDRS Report No. 1[J]. Arch Ophthalmol, 1985103(12): 1796-806.
[8]
Scott IU, Danis RP, Bressler SB, et al. Effect of focal/grid photocoagulation on visual acuity and retinal thickening in eyes with non-center-involved diabetic macular edema[J]. Retina, 2009, 29: 613-617.
[9]
Schmidt-Erfurth U, Garcia-Arumi J, Bandello F, et al. Guidelines for the management of diabetic macular edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica, 2017, 237(4): 185-222.
[10]
Parodi BM, Iacono P, Cascavilla M, et al. A Pathogenetic classification of diabetic macular edema[J]. Ophthalmic Res, 2018, 60(1): 23-28.
[11]
Kinyoun J, Barton F, Fisher M, et al. Detection of diabetic macular edema. Ophthalmoscopy versus photography-Early Treatment Diabetic Retinopathy Study report number 5. The ETDRS Research Group[J]. Ophthalmology, 1989, 96(6): 746-750.
[12]
Browning DJ, Altaweel MM, Bressler NM, et al. Diabetic macular edema: what is focal and what is diffuse?[J]. Am J Ophthalmol, 2008, 146(5): 649-655.
[13]
Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions[J]. Prog Retin Eye Res, 2013, 34(5): 19-48.
[14]
Daruich A, Matet A, Moulin A, et al. Mechanisms of macular edema: beyond the surface[J]. Progress in Retinal and Eye Research, 2018, 63(3): 20-68.
[15]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001, 414: 813-820.
[16]
Romero AP, Baget BM, Pareja RA, et al. Diabetic macular edema pathophysiology: vasogenic versus inflammatory[J]. J Diabetes Res, 2016: 2156273.
[17]
Reichenbach A, Bringmann A. New functions of Müller cells[J]. Glia, 2013, 61(5): 651-678.
[18]
Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina[J]. Prog Retin Eye Res, 2009, 28(5): 348-368.
[19]
Sorrentino FS, Allkabes M, Salsini G, et al. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy[J]. Life Sciences, 2016, 162: 54-59.
[20]
Bringmann A, Wiedemann P. Müller glial cells in retinal disease[J]. Ophthalmologica, 2012, 227(1): 1-18.
[21]
Wang J, Xu X, Elliott MH, et al. Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage[J]. Diabetes, 2010, 59(9): 2297-2305.
[22]
Sonoda S, Sakamoto T, Shirasawa M, et al. Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema[J]. Investigative Ophthalmology & Visual Science, 2013, 54(8): 5367-5374.
[23]
Noma H, Mimura T, Yasuda K, et al. Role of inflammation in diabetic macular edema[J]. Ophthalmologica, 2014, 232(3): 127-135.
[24]
Vincent JA, Mohr S. Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia[J]. Diabetes, 2007, 56(1): 224-230.
[25]
Rangasamy S, McGuire PG, Franco NC, et al. Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy[J]. PLoS One, 2014, 9(10) : e108508.
[26]
Sonoda S, Sakamoto T, Yamashita T, et al. Retinal morphologic changes and concentrations of cytokines in eyes with diabetic macular edema[J]. Retina, 2014, 13(4): 741-748.
[27]
Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy[J]. Exp Diabetes Res, 2007: 43603.
[28]
Xu HZ, Le YZ. Significance of outer blood-retina barrier breakdown in diabetes and ischemia[J]. Invest Ophthalmol Vis Sci, 2011, 52: 2160-2164.
[29]
Samuels IS, Lee CA, Petrash JM, et al. Exclusion of aldose reductase as a mediator of ERG deficits in a mouse model of diabetic eye disease[J]. Vis Neurosci, 2012, 29(6): 267-274.
[30]
Beasley S, et al. Caspase-14 expression impairs retinal pigment epithelium barrier function: potential role in diabetic macular edema[J]. Biomed Res Int, 2014: 417986.
[31]
Simó R, Villarroel M, Corraliza L, et al. The retinal pigment epithelium: something morethan a constituent of the blood-retinal barrier--implications for the pathogenesis of diabetic retinopathy[J]. J Biomed Biotechnol, 2010: 190724.
[32]
Querques G. Enhanced depth imaging optical coherence tomography in type 2 diabetes[J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6017-6024.
[33]
Lutty GA, Cao J, McLeod DS. Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid[J]. Am J Pathol, 1997, 151(3): 707-714.
[34]
Otani T, Kishi S, Maruyama Y. Patterns of diabetic macular edema with optical coherence tomography[J]. Am J Ophthalmol, 1999, 127(6): 688-693.
[35]
Kim BY, Smith SD, Kaiser PK, et al. Optical Coherence Tomographic Patterns of Diabetic Macular Edema[J]. Am J Ophthalmol, 2006, 142(3): 405-412.
[36]
Panozzo G, Parolini B, Gusson E, et al. Diabetic macular edema: an OCT-based classification[J]. Semin Ophthalmol, 2004, 19(1-2): 13-20.
[37]
Koleva GDN, Sivkova NP. Types of diabetic macular edema assessed by optical coherence tomography[J]. Folia Med, 2008, 50(3): 30-38.
[38]
Figueras RM, Molins B, Sala PA, et al. Peripheral blood metabolic and inflammatory factors as biomarkers to ocular findings in diabetic macular edema[J]. PLoS One, 2017, 12(3): e0173865.
[39]
Spaide R. Retinal vascular cystoid macular edema: review and new theory[J]. Retina, 2016, 36(10): 1823-1842.
[40]
Kim T, Shin H, Kim S, et al. Factors influencing intravitreal bevacizumab and triamcinolone treatment in patients with diabetic macular edema[J]. European Journal of Ophthalmology, 2017, 27(6): 746-750.
[41]
Kim J, Lee D, Joe S, et al. Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients[J]. Investigative Ophthalmology & Visual Science, 2013, 54(5): 3378-3384.
[42]
Giocanti AA, Hrarat L, Qu LM, et al. Functional and anatomical outcomes in patients with serous retinal detachment in diabetic macular edema treated with ranibizumab[J] Investigative Ophthalmology & Visual Science, 2017, 58(2): 797-800.
[43]
Kaiser PK, Riemann CD, Sears JE, et al. Macular traction detachment and diabetic macular edema associated with posterior hyaloidal traction[J]. Am J Ophthalmol2001131(1): 44-49.
[44]
Yamamoto S, Yamamoto T, Hayashi M, et al. Morphological and functional analyses of diabetic macular edema by optical coherence tomography and multifocal electroretinograms[J]. Graefe's Arch Clin Ophthalmol, 2001, 239(2): 96-101.
[45]
Helmy YM, Atta AHR. Optical coherence tomography classification of diabetic cystoid macular edema[J]. Clin Ophthalmol, 2013, 7: 1731-1737.
[46]
Ozcaliskan S, Balci S, Karasu B, et al. Effect of optical coherence tomography patterns on one-year outcomes of aflibercept therapy for diabetic macular edema[J]. J Coll Physicians Surg Pak, 2020, 30(2): 149-153.
[47]
Arf S, Sayman I, Hocaoglu M, et al. Spectral domain optical coherence tomography classification of diabetic macular edema: a new proposal to clinical practice[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(6): 1165-1172.
[48]
Sophie R, Lu N, Campochiaro PA. Predictors of functional and anatomic outcomes in patients with diabetic macular edema treated with ranibizumab[J]. Ophthalmology, 2015, 122(7): 1395-1401.
[49]
Korobelnik JF, Lu C, Katz TA, et al. Effect of baseline subretinal fluid on treatment outcomes in vivid-DME and vista-DME studies[J]. Ophthalmol Retina, 2019, 3: 663-669.
[50]
Panozzo G, Cicinelli MV, Augustin AJ, et al. An optical coherence tomography-based grading of diabetic maculopathy proposed by an international expert panel: The European School for Advanced Studies in Ophthalmology classification[J]. Eur J Ophthalmol, 2020, 30(1): 8-18.
[51]
Ophir A, Martinez MR, Mosqueda P, et al. Vitreous traction and epiretinal membranes in diabetic macular oedema using spectral-domain optical coherence tomography[J]. Eye, 2010, 24: 1545-1553.
[52]
Mikhail M, Stewart S, Seow F, et al. Vitreomacular interface abnormalities in patients with diabetic macular oedema and their implications on the response to anti-VEGF therapy[J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(8): 1411-1418.
[53]
Kang SW, Park CY, Ham DI. The correlation between fluorescein angiographic and optical coherence tomographic features in clinically significant diabetic macular edema[J]. Am J Ophthalmol, 2004, 137(2): 313-322.
[54]
Chang CK, Cheng CK, Peng CH. The incidence and risk factors for the development of vitreomacular interface abnormality in diabetic macular edema treated with intravitreal injection of anti-VEGF[J]. Eye (Lond), 2017, 31(5): 762-770.
[55]
Yoon D, Rusu I, and Barbazetto I. Reduced effect of antivascular endothelial growth factor agents on diabetics with vitreomacular interface abnormalities[J]. Int Ophthalmol, 2014, 34(4): 817-823, 47.
[56]
Hagenau F, Vogt D, Ziada J, et al. Vitrectomy for Diabetic Macular Edema: Optical Coherence Tomography Criteria and Pathology of the Vitreomacular Interface[J]. Am J Ophthalmol, 2019, 200(4): 34-46.
[57]
Nicholson L, Ramu J, Triantafyllopoulou I, et al. Diagnostic accuracy of disorganization of the retinal inner layers in detecting macular capillary non-perfusion in diabetic retinopathy[J]. Clin Exp Ophthalmol, 2015, 43(8): 735-741.
[58]
Sun JK, Lin MM, Lammer J, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema[J]. JAMA Ophthalmol, 2014, 132(11): 1309-1316.
[59]
Radwan SH, Soliman AZ, Tokarev J, et al. Association of disorganization of retinal inner layers with vision after resolution of center-involved diabetic macular edema[J]. JAMA Ophthalmol, 2015, 133(7): 820-825.
[60]
Yeung L, Lima VC, Garcia P, et al. Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema[J]. Ophthalmology, 2009, 116(6): 1158-1167.
[61]
Balaratnasingam C, Inoue M, Ahn S, et al. Visual acuity is correlated with the area of the foveal avascular zone in diabetic retinopathy and retinal vein occlusion[J]. Ophthalmology, 2016, 123(11): 2352-2367.
[62]
Moein HR, Novais EA, Rebhun CB, et al. Optical coherence tomography angiography to detect macular capillary ischemia in patients with inner retinal changes after resolved diabetic macular edema[J]. Retina, 2018, 38(12): 2277-2284.
[63]
Grewal DS, Hariprasad SM, Jaffe GJ. Role of disorganization of retinal inner layers as an optical coherence tomography biomarker in diabetic and uveitic macular edema[J].Ophthalmic Surg Lasers Imaging Retina, 2017, 48(4): 282-288.
[64]
Sakata K, Funatsu H, Harino S, et al. Relationship of macular microcirculation and retinal thickness with visual acuity in diabetic macular edema[J]. Ophthalmology, 2007, 114(11): 2061-2069.
[65]
Sarraf D, Rahimy E, Fawzi AA, et al. Paracentral acute middle maculopathy: a new variant of acute macular neuroretinopathy associated with retinal capillary ischemia[J]. JAMA Ophthalmol, 2013, 131(10): 1275-1287.
[66]
Sun JK, Radwan SH, Soliman AZ, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema[J]. Diabetes, 2015, 64(7): 2560-2570.
[67]
Coughlin BA, Feenstra DJ, Mohr S. Müller cells and diabetic retinopathy[J]. Vis Res, 2017, 139: 93-100.
[68]
Deak GG, Bolz M, Ritter M, et al. A systematic correlation between morphology and functional alterations in diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2010, 51(12): 6710-6714.
[69]
Reznicek L, Cserhati S, Seidensticker F, et al. Functional and morphological changes in diabetic macular edema over the course of anti-vascular endothelial growth factor treatment[J]. Acta Ophthalmol, 2013, 91(7): e529-e536.
[70]
Karst S, Mitsch C, Scholda C, et al. Detailed analysis of retinal morphology in patients with diabetic macular edema (DME) randomized to ranibizumab or triamcinolone treatment - reply to the letter to the editor[J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(5): 1039-1040.
[71]
Jain A, Saxena S, Khanna VK, et al. Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus[J]. Mol Vis, 2013, 19: 1760-1768.
[72]
Omri S, Omri B, Savoldelli M, et al. The outer limiting membrane (OLM) revisited: clinical implications[J]. Clin Ophthalmol, 2010, 4: 183-195.
[73]
Das R, Spence G, Hogg RE, et al. Disorganization of inner retina and outer retinal morphology in diabetic macular edema[J]. JAMA Ophthalmol, 2018, 136(2): 202-208.
[74]
Sharma SR, Saxena S, Mishra N, et al. The association of grades of photoreceptor inner segment-ellipsoid band disruption with severity of retinopathy in type 2 diabetes mellitus[J]. J Case Rep Stud, 2014, 2: 205.
[75]
Murakami T, Nishijima K, Sakamoto A, et al. Association of pathomorphology, photoreceptor status, and retinal thickness with visual acuity in diabetic retinopathy[J]. Am J Ophthalmol, 2011, 151(2): 310-317.
[76]
Shin HJ, Lee SH, Chung H, et al. Association between photoreceptor integrity and visual outcome in diabetic macular edema[J]. Graefes Arch Clin Exp Ophthalmol, 2012, 250(1): 61-70.
[77]
Maheshwary AS, Oster SF, Yuson RM, et al. The association between percent disruption of the photoreceptor inner segment/outer segment and visual acuity in diabetic macular edema[J]. Am J Ophthalmol, 2010, 150(1): 63-67.
[78]
Scarinci F, Nesper PL, Fawzi AA. Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia[J]. Am J Ophthalmol, 2016, 168(4): 129-138.
[79]
Yanyali A, Bozkurt KT, Macin A, et al. Quantitative assessment of photoreceptor layer in eyes with resolved edema after pars plana vitrectomy with internal limiting membrane removal for diabetic macular edema[J]. Ophthalmologica, 2011, 226(2): 57-63.
[80]
Byeon S, Chu Y, Hong Y, et al. New insights into the pathoanatomy of diabetic macular edema: angiographic patterns and optical coherence tomography[J]. Retina, 2012, 32(6): 1087-1099.
[81]
Gupta A, Raman R, Mohana K, et al. Communications between intraretinal and subretinal space on optical coherence tomography of neurosensory retinal detachment in diabetic macular edema[J]. Oman J Ophthalmol, 2013, 6(3): 183-188.
[82]
Gaucher D, Sebah C, Erginay A, et al. Optical coherence tomography features during the evaluation of serous retinal detachment in patients with diabetic macular edema[J]. Am J Ophthalmol, 2008, 145(2): 289-296.
[83]
Campos A, Campos EJ, Martins J, et al. Viewing the choroid: where we stand, challenges and contradictions in diabetic retinopathy and diabetic macular oedema[J]. Acta Ophthalmol, 2017, 95(5): 446-459.
[84]
Vujosevic S, Torresin T, Berton M, et al. Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphologic and functional entities[J]. Am J phthalmol, 2017, 181(9): 149-155.
[85]
Gerendas BS, Prager S, Deak G, et al. Predictive imaging biomarkers relevant for functional and anatomical outcomes during ranibizumab therapy of diabetic macular oedema[J]. Br J Ophthalmol, 2018, 102(2): 195-203.
[86]
Davoudi S, Papavasileiou E, Roohipoor R, et al. Optical coherence tomography characteristics of macular edema and hard exudates and their association with lipid serum levels in type 2 diabetes[J]. Retina, 2016, 36(9): 1622-1629.
[87]
Ota M, Nishijima K, Sakamoto A, et al. Optical coherence tomographic evaluation of foveal hard exudates in patients with diabetic maculopathy accompanying macular detachment[J]. Ophthalmology, 2010, 117(10): 1996-2002.
[88]
Vujosevic S, Bini S, Torresin T, et al. Hyperreflective retinal spots in normal and diabetic eyes: B-scan and en face spectral domain optical coherence tomography evaluation[J]. Retina, 2017, 37(6): 1092-1103.
[89]
Uji A, Murakami T, Nishijima K, et al. Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema[J]. Am J Ophthalmol, 2012, 153(4): 710-717.
[90]
Vujosevic S, Bini S, Midena G, et al. Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT[J]. J Diabetes Res, 2013: 5.
[91]
Benedetto UD, Sacconi R, Pierro L, et al. Optical coherence tomographic hyperreflective foci in early stages of diabetic retinopathy[J]. Retina, 2015, 35(3): 449-453.
[92]
Lee H, Jang H, Choi YA, et al. Association between soluble CD14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema[J]. Investigative Ophthalmology & Visual Science, 2018, 59(2): 715-721.
[93]
Zur D, Iglicki M, Busch C, et al. OCT biomarkers as functional outcome predictors in diabetic macular edema treated with dexamethasone implant[J]. Ophthalmology, 2018, 125(2): 267-275.
[94]
Chatziralli I, Theodossiadis P, Parikakis E, et al. Dexamethasone intravitreal implant in diabetic macular edema: real-life data from a prospective study and predictive factors for visual outcome[J]. Diabetes Ther, 2017, 8(6): 1393-1404.
[95]
Hwang HS, Chae JB, Kim JY, et al. Association between hyperreflective dots on spectral-domain optical coherence tomography in macular edema and response to treatment[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5958-5967.
[96]
Vujosevic S, Berton M, Bini S, et al. Hyperreflective retinal spots and visual function after anti-vascular endothelial growth factor treatment in center-involving diabetic macular edema[J]. Retina, 2016, 36(7): 1298-1308.
[97]
Framme C, Schweizer P, Imesch M, et al. Behavior of SD-OCT-detected hyperreflective foci in the retina of anti-VEGF-treated patients with diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5814-5318.
[1] 吕淑懿, 张燕, 章美武, 范晓翔, 高立博, 李飞. 人工智能自动检测系统对不同经验医师诊断乳腺小肿块的辅助作用[J]. 中华医学超声杂志(电子版), 2022, 19(09): 983-989.
[2] 赵珊珊, 马彩叶, 张金堂. ACR TI-RADS分类及血清学指标在不同大小甲状腺髓样癌风险管理中的价值[J]. 中华医学超声杂志(电子版), 2022, 19(04): 325-330.
[3] 冉秋燕, 付萍, 魏世蓉, 肖何, 徐琰, 赵连花. 乳腺癌新辅助全身治疗后病理完全缓解的预测因子:一项单中心回顾性研究[J]. 中华乳腺病杂志(电子版), 2022, 16(04): 212-218.
[4] 李振霞, 郑小雯, 纪芳, 夏伦果, 陈荣敬, 游清玲, 房兵. 基于Bloom目标分类理论的翻转课堂模式在口腔本科正畸教学中的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 133-139.
[5] 刘晓宁, 刘冰, 马丽琼, 苏嫦娥, 苗建军. 中性粒细胞-淋巴细胞比值在新亚特兰大分类标准下对重症急性胰腺炎早期预测价值的Meta分析和系统评价[J]. 中华普通外科学文献(电子版), 2022, 16(01): 67-73.
[6] 庞兴华, 苑著. 针吸细胞块技术在术前乳腺癌分子分型中的应用研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 276-279.
[7] 付曾强, 罗洪, 彭晶晶. 老年乳腺浸润性导管癌超声特征及其与分子分型相关性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 258-261.
[8] 张燕珍, 王锡携, 文小兰. 血清巨噬细胞迁移抑制因子对活动性肺结核分诊检测的意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 200-202.
[9] 王国俊, 高不郎. 胃食管结合部癌外科治疗历史、现状与展望[J]. 中华腔镜外科杂志(电子版), 2022, 15(05): 315-320.
[10] 解雯, 郑雪平, 郭高正, 王怡明, 石佳勇, 吴自然, 杜美萱. 改良TROPIS联合置管引流术治疗复杂性肛瘘的疗效及安全性研究[J]. 中华结直肠疾病电子杂志, 2022, 11(02): 114-119.
[11] 李欢, 唐钰书, 王璇, 谢席胜. 慢性肾脏病患者肺部感染的诊治进展[J]. 中华肾病研究电子杂志, 2022, 11(05): 285-289.
[12] 季红娟, 林娟. 基于分类树方法构建糖尿病肾脏疾病发病风险模型[J]. 中华肾病研究电子杂志, 2021, 10(05): 246-251.
[13] 王红艳, 白桂芹. 子痫前期的分类[J]. 中华产科急救电子杂志, 2021, 10(04): 197-200.
[14] 王佳讯, 陈毓菁, 梁展鹏, 伍卓强, 邬家明, 林毅迪. 超声TI-RADS分类与细针穿刺活检在诊断甲状腺恶性结节中的临床应用[J]. 中华介入放射学电子杂志, 2022, 10(01): 61-64.
[15] 申鲁霞, 高英莉, 王妍, 时忠丽. 基于CiteSpace的国内外北美护理诊断分类系统领域的研究热点及趋势分析[J]. 中华诊断学电子杂志, 2022, 10(04): 274-279.
阅读次数
全文


摘要