切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 198 -205. doi: 10.3877/cma.j.issn.2095-2007.2020.04.002

论著

CIZ1基因通过调控MEK-ERK1-2信号通路影响视网膜母细胞瘤细胞增殖和凋亡的实验研究
张敬学1, 闫雪静1,(), 武珅1, 刘谦1   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 北京市眼视光与视觉科学重点实验室
  • 收稿日期:2020-08-06 出版日期:2020-08-28
  • 通信作者: 闫雪静
  • 基金资助:
    北京市属医学科研院所公益发展改革试点项目(京医研2018-2); 北京市医院管理中心"登峰"计划(DFL20190201); 首都医科大学附属北京同仁医院科研种子基金资助项目(2018-YJJ-ZZL-037)

Effect of CIZ1 gene on the proliferation and apoptosis of Y79 cells through MEK-ERK1-2 signaling pathway

Jingxue Zhang1, Xuejing Yan1,(), Shen Wu1, Qian Liu1   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing 100730, China
  • Received:2020-08-06 Published:2020-08-28
  • Corresponding author: Xuejing Yan
引用本文:

张敬学, 闫雪静, 武珅, 刘谦. CIZ1基因通过调控MEK-ERK1-2信号通路影响视网膜母细胞瘤细胞增殖和凋亡的实验研究[J]. 中华眼科医学杂志(电子版), 2020, 10(04): 198-205.

Jingxue Zhang, Xuejing Yan, Shen Wu, Qian Liu. Effect of CIZ1 gene on the proliferation and apoptosis of Y79 cells through MEK-ERK1-2 signaling pathway[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2020, 10(04): 198-205.

目的

探讨锌指蛋白(CIZ)1基因影响视网膜母细胞瘤(RB)细胞增殖和凋亡的机制。

方法

RB组织芯片购自西安艾丽娜生物科技有限公司,人神经母细胞瘤细胞系Y79购自美国ATCC公司。应用免疫组化方法检测CIZ1基因在RB肿瘤组织和正常视网膜组织中的表达情况;应用荧光定量聚合酶链式反应(PCR)和Western blot方法检测CIZ1基因在RB细胞中信使核糖核酸(mRNA)和蛋白的表达水平。选取RB细胞系Y79细胞,采用数字表法随机分为对照组、干扰CIZ1基因组(shCIZ1)-1及shCIZ1-2等3组。采用不同的慢病毒分别感染阴性对照组和两组shCIZ1基因组细胞。应用荧光定量PCR及Western blot方法检测敲低效率;应用细胞增殖测量试剂盒(CCK8)方法检测细胞的生长、半胱氨酸天冬氨酸蛋白酶(caspase)3-7的活性和细胞凋亡相关蛋白表达的情况;通过Western blot方法检测丝裂原活化蛋白激酶激酶(MEK)-细胞外调节蛋白激酶(ERK)1-2信号通路相关蛋白的表达变化。CIZ1的基因表达量、蛋白表达水平、RB细胞的增殖倍数、Caspase3-7、MEK、p-MEK、ERK及p-ERK蛋白的表达水平,采用单样本K-S拟合优度法进行正态性检验,符合正态分布者以均数±标准差进行描述。多组样本间不同组间均数的比较采用重复测量资料的方差分析,采用LSD检验进行两两比较。

结果

与正常视网膜组织相比,CIZ1基因在RB肿瘤组织中的表达水平显著上调;在RB细胞中,CIZ1基因mRNA水平及蛋白水平均显著高于正常人视网膜色素上皮细胞(ARPE),Y79细胞、人神经母细胞瘤细胞系(WERI-Rb)-1细胞中mRNA相对表达量分别为(0.061±0.001)、(0.041±0.001),与ARPE19细胞中mRNA相对表达量(0.025±0.001)相比,差异均具有统计学意义(t=41.58,18.68;P<0.05);慢病毒干扰CIZ1基因的表达可以显著降低CIZ1的mRNA与蛋白表达水平,shCIZ1-1组和shCIZ1-2 CIZ1组mRNA的相对表达量分别为(0.015±0.008)和(0.008±0.003),与对照组mRNA的相对表达量(0.032±0.003)相比,差异均具有统计学意义(t=3.72,5.357;P<0.05);敲低CIZ1基因可以显著抑制RB细胞的增殖,也可以抑制增殖相关基因即细胞周期蛋白(Cyclin)D1蛋白的表达,与对照组相比差异有统计学意义(t=21.18,21.80;P<0.05);同时还可以抑制增殖相关基因Cyclin E1蛋白的表达,与对照组相比差异有统计学意义(t=17.26,16.41;P<0.05)。敲低CIZ1可以显著增强细胞凋亡相关蛋白Caspase3-7的活性,上调Caspase-3和Caspase-7蛋白的表达。Western blot检测敲低CIZ1基因对MEK-ERK1-2信号通路影响的结果显示,CIZ1下调可以显著抑制磷酸化的MEK的表达水平,与对照组相比差异具有统计学意义(t=3.925,8.461;P<0.05);CIZ1下调可抑制ERK1-2蛋白的磷酸化水平,与对照组相比差异具有统计学意义(t=14.12,28.36;P<0.05)。

结论

敲低CIZ1基因可以通过抑制MEK-ERK1-2信号通路抑制RB的生长。

Objective

To investigate the effect of CIZ1 gene on the proliferation of retinoblastoma cells and exploring the underlying mechanism.

Methods

Retinoblastoma tissue chip was purchased from Xi′an Alina Biotechnology Co., Ltd., and human neuroblastoma cell line Y79 was purchased from ATCC. Immunohistochemistry was used to detect the expression of CIZ1 gene in tumor tissue of retinoblastoma and normal retinal tissue. mRNA and protein expression levels of CIZ1 in retinoblastoma cells were detected by fluorescence quantitative PCR and Western blot. Retinoblastoma cell line Y79 cells were selected and infected with the negative control group and two lentiviruses interfering with CIZ1 gene, respectively. The experiment was divided into three groups: nine samples in total, control group, shCIZ1-1 group and shCIZ1-2 group. Fluorescence quantitative PCR and Western blot were used to detect knock down efficiency. Then, CCK8 assay kit was used to detect cell growth, and apoptosis was detected by Caspase-3 to 7 activity and expression of apoptosis-related proteins. Finally, Western blot was used to detect the expression of MEK-ERK1-2 signaling pathway related proteins.The gene and protein expression level CIZ1, RB cell proliferation ability, Caspase-3 to7, MEK, p-MEK, ERK, p-ERK protein expression levels were statistically described as mean±standard deviation. The normality test uses the one-sample K-S goodness-of-fit method. The comparison of the mean between different groups among multiple samples adopts repeated measures analysis of variance, and LSD test was used for pairwise comparison.

Results

Compared with normal retinal tissue, the expression level of CIZ1 gene in tumor tissue of retinoblastoma was significantly up-regulated. The mRNA level and protein level of CIZ1 were highly expressed in retinoblastoma cells, and the relative mRNA expression levels in Y79, WERI-Rb1 and ARPE19 cells were (0.061±0.001), (0.041±0.001), (0.025±0.001); the differences were statistically significant (t=41.58, 18.68; P<0.05). Compared with the control group, the mRNA and protein expression levels of CIZ1 were significantly decreased by interfering with CIZ1. The relative mRNA expression levels of CIZ1 in the control group, shCIZ1-1 group and shCIZ1-2 group were (0.032±0.002), (0.015±0.007), (0.008±0.003); the differences were statistically significant (t=3.72, 5.357; P<0.05). Knocking down CIZ1 significantly inhibited the proliferation of retinoblastoma cells, down-regulated the expression of Cyclin D1, compared with the control group; the difference was statistically significant (t=21.18, 21.8; P<0.05). And down-regulated the expression of Cyclin E1, compared with the control group; the difference was statistically significant (t=17.26, 16.41; P<0.05). Knockdown of CIZ1 significantly enhanced Caspase-3 to 7 activity and upregulated the expression of Caspase-3 and Caspase-7. Finally, Western blot was used to detect the effect of CIZ1 knockdown on the MEK-ERK1-2 signaling pathway. The results showed that, compared with the control group, down-regulation of CIZ1 significantly inhibited the expression levels of phosphorylated MEK (t=3.925, 8.461; P<0.05) and ERK1-2 proteins (t=14.12, 28.36; P<0.05); the difference was statistically significant.

Conclusions

Knockdown of CIZ1 inhibits the growth of retinoblastoma cells by inhibiting the MEK-ERK1-2 signaling pathway.

图1 慢病毒转染后细胞周期素依赖性激酶抑制因子1A相互作用的锌指蛋白(CIZ1)基因在视网膜母细胞瘤组织的免疫组化染色显微结构图和在视网膜母细胞瘤细胞中的基因表达量柱状图及蛋白条带图 图A和图B示免疫组化法检测CIZ1基因在视网膜母细胞瘤肿瘤组织和正常视网膜组织中的表达情况(CIZ1免疫组化染色,×20,标尺=200 μm);图C示荧光定量聚合酶链式反应检测CIZ1基因信使核糖核酸水平的相对表达量;图D示Western blot方法检测CIZ1蛋白水平的蛋白条带图。注:*与ARPE19细胞组比较,差异有统计学意义;CIZ1,细胞周期素依赖性激酶抑制因子1A相互作用的锌指蛋白
图2 慢病毒转染后细胞周期素依赖性激酶抑制因子1A相互作用的锌指蛋白干扰慢病毒感染细胞后的显微结构图 图A~图C示不同病毒载体干扰细胞后的荧光显微镜观察结果(×10,标尺=100 μm);图D~图F示不同病毒载体干扰细胞后的光学显微镜观察结果(×100,标尺=100 μm)
图5 慢病毒转染后细胞周期素依赖性激酶抑制因子1A相互作用的CIZ1后Y79细胞凋亡相关蛋白的活性变化柱状图、蛋白条带图及差异柱状图 图5A示酶活性方法检测凋亡相关蛋白Caspase3-7活性;图5B示不同干扰组间Caspase3、Caspase7蛋白的条带灰度比较柱状图;图5C示Western blot方法检测凋亡相关蛋白Caspase3、Caspase7的蛋白条带图。注:*与对照组比较,差异有统计学意义;CIZ1,细胞周期素依赖性激酶抑制因子1A相互作用的锌指蛋白
图6 干扰CIZ1后MEK/ERK1/2信号通路相关蛋白的条带灰度比值柱状图及蛋白条带图 图6A示不同干扰组间丝裂原活化蛋白激酶激酶、p-丝裂原活化蛋白激酶激酶、细胞外调节蛋白激酶、p-细胞外调节蛋白激酶蛋白的条带灰度比值柱状图;图6B示Western blot方法检测丝裂原活化蛋白激酶激酶-细胞外调节蛋白激酶1-2信号通路相关蛋白的条带结果。注:*与对照组比较,差异有统计学意义;CIZ1,细胞周期素依赖性激酶抑制因子1A相互作用的锌指蛋白
[1]
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA: A Cancer Journal for Clinicians, 2015, 65(2): 87-108.
[2]
Dimaras H, Kimani K, Dimba EAO, et al. Retinoblastoma[J]. Lancet, 2012, 379(9824): 1436-1446.
[3]
Eagle RC. The pathology of ocular cancer[J]. Eye, 2013, 27(2): 128-136.
[4]
Munier FL, Beck-Popovic M, Chantada GL, et al. Conservative management of retinoblastoma: Challenging orthodoxy without compromising the state of metastatic grace. " Alive, with good vision and no comorbidity" [J]. Progress in Retinal and Eye Research, 2019, 73: 100764.
[5]
Berry J L, Kogachi K, Murphree AL, et al. A review of recurrent retinoblastoma: children's hospital Los Angeles classification and treatment guidelines[J]. International Ophthalmology Clinics, 2019, 59(2): 65-75.
[6]
Pauzaite T, Thacker U, Tollitt J, et al. Emerging roles for Ciz1 in cell cycle regulation and as a driver of tumorigenesis[J]. Biomolecules, 2016, 7(1): 1.
[7]
Chen X, Wang P, Wang S, et al. CIZ1 knockdown suppresses the proliferation of bladder cancer cells by inducing apoptosis[J]. Gene, 2019, 719: 143946.
[8]
Liu T, Ren X, Li L, et al. Ciz1 promotes tumorigenicity of prostate carcinoma cells[J]. Front Biosci, 2015, 20(4): 705-715.
[9]
Yin J, Wang C, Tang X, et al. CIZ1 regulates the proliferation, cycle distribution and colony formation of RKO human colorectal cancer cells[J]. Mol Med Rep, 2013, 8(6): 1630-1634.
[10]
Kivelä T. The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death[J]. Br J Ophthalmol, 2009, 93(9): 1129-1131.
[11]
Dimaras H, Corson TW, Cobrinik D, et al. Retinoblastoma[J]. Nat Rev Dis Primers, 2015, 1: 15021.
[12]
de Jong MC, Kors WA, de Graaf P, et al. Trilateral retinoblastoma: a systematic review and meta-analysis[J]. Lancet Oncol, 2014, 15(10): 1157-1167.
[13]
Abramson DH, Dunkel IJ, Brodie SE, et al. A phase Ⅰ-Ⅱ study of direct intraarterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma initial results[J]. Ophthalmology, 2008, 115(8): 1398-1404.
[14]
Fabian ID, Onadim Z, Karaa E, et al. The management of retinoblastoma[J]. Oncogene, 2018, 37(12): 1551-1560.
[15]
Yousef YA, Soliman SE, Astudillo P, et al. Intra-arterial chemotherapy for retinoblastoma: a systematic review[J]. JAMA Ophthalmol, 2016, 134(5): 584-591.
[16]
姜华,夏杰军,赵军阳,等. 视网膜母细胞瘤房水及肿瘤组织的基因组信息分析初探[J]. 中华介入放射学电子杂志20208(1):57-61.
[17]
张靖,赵军阳,项道满,等. 经导管眼动脉灌注化疗治疗眼内晚期视网膜母细胞瘤化疗失败患者的价值[J]. 中华放射学杂志201448(7):577-581.
[18]
Shields CL, Shields JA. Basic understanding of currentclassification and management of retinoblastoma[J]. Curr Opin Ophthalmol, 2006, 17(3): 228-234.
[19]
Friend SH, Horowitz JM, Gerber MR, et al. Deletions of a DNA sequence in retinoblastomas and mesenchymal tumors: organization of the sequence and its encoded protein[J]. Proc Natl Acad Sci USA, 1987, 84(24): 9059-9063.
[20]
Wu N, Jia D, Bates B, et al. A mouse model of MYCN-driven retinoblastoma reveals MYCN-independent tumor reemergence[J]. J Clin Invest, 2017, 127(3): 888-898.
[21]
Song LL, Huang YX, Zhang XL, et al. Downregulation of microRNA-224-3p hampers retinoblastoma progression via activation of the Hippo-YAP signaling pathway by increasing LATS2[J]. Invest Ophthalmol Vis Sci, 2020, 61(3): 32.
[22]
Zhang C, Wu S. MicroRNA-378a-3p restrains the proliferation of retinoblastoma cells but promotes apoptosis of retinoblastoma cells via inhibition of FOXG1[J]. Invest Ophthalmol Vis Sci, 2020, 61(5): 31.
[23]
Liu K, Huang J, Xie M, et al. MIR34A regulates autophagy and apoptosis by targeting HMGB1 in the retinoblastoma cell[J]. Autophagy, 2014, 10(3): 442-452.
[24]
Lyv X, Wu F, Zhang H, et al. Long noncoding RNA ZFPM2-AS1 knockdown restrainsthe development of retinoblastoma by modulating the microRNA-515-HOXA1-Wnt-β-catenin axis[J]. Invest Ophthalmol Vis Sci, 2020, 61(6): 41.
[25]
Zhang JX, Yan XJ, Wu S, et al. KLF16 overexpression deleteriously affects the proliferation and invasion of retinoblastoma by transcriptionally repressing BCL2L15[J]. Biochem Biophys Res Commun, 2020, 529(4): 977-983.
[26]
Stewart E, Federico SM, Chen X, et al. Orthotopic patient-derived xenografts of paediatric solid tumours[J]. Nature, 2017, 549(7670): 96-100.
[27]
He XY, Chai PW, Li F, et al. A novel LncRNA transcript, RBAT1, accelerates tumorigenesis through interacting with HNRNPL and cis-activating E2F3[J]. Mol Cancer, 2020, 19(1): 115.
[28]
Zhou X, Liu Q, Wada Y, et al. CDKN1A-interacting zinc finger protein 1 is a novel biomarker for lung squamous cell carcinoma[J]. Oncol Lett, 2018, 15(1): 183-188.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 傅子财, 戴冠东, 朱伟民, 陆伟, 熊建义, 王大平, 邓桢翰. 过氧化物酶体增殖物激活受体在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 363-367.
[3] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[4] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[5] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[6] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[7] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[8] 郑嘉裕, 吴建杰, 李小娟, 曾恒达, 李国邦, 黄炯煅, 温星桥. hsa_circ_0090923在前列腺癌中的表达及其对前列腺癌细胞增殖和迁移的调控[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 276-283.
[9] 莫钊鸿, 翟航, 苏日顺, 孟泓宇, 罗豪, 陈文豪, 许瑞云. U2AF2表达对肝细胞癌增殖和迁移的影响及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 336-341.
[10] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[11] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[12] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[13] 方辉, 李菲, 张帆, 魏强, 陈强谱. 外源性瘦素对梗阻性黄疸大鼠肠黏膜增殖的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 575-580.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要