切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2020, Vol. 10 ›› Issue (03) : 135 -140. doi: 10.3877/cma.j.issn.2095-2007.2020.03.002

论著

基于光学成像屈光补偿技术对视网膜屈光状态测量方法的研究
田佳鑫1, 魏士飞1, 李仕明1, 刘含若1, 张青1, 崔焱2, 郭静云2, 黄叶权2, 冬雪川2, 王宁利1,()   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 北京市眼科学与视觉科学重点实验室;100191 北京大数据精准医疗高精尖创新中心(北京航空航天大学与首都医科大学眼科学院联合组建)
    2. 100176 北京尼莫眼科技术研究院
  • 收稿日期:2020-05-08 出版日期:2020-06-28
  • 通信作者: 王宁利
  • 基金资助:
    北京市属医学科研院所公益发展改革试点项目(京医研2016-5)

A refractive state measurement for retina based on optical imaging refractive compensation technology

Jiaxin Tian1, Shifei Wei1, Shiming Li1, Hanruo Liu1, Qing Zhang1, Yan Cui2, Jingyun Guo2, Yequan Huang2, Xuechuan Dong2, Ningli Wang1,()   

  1. 1. Beijing Tongren Hospital, Capital Medical University, Beijing Tongren Eye Cener, Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Lab. 100730, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China
    2. NIMO Ophthalmology Research Institute, Beijing 100176, China
  • Received:2020-05-08 Published:2020-06-28
  • Corresponding author: Ningli Wang
引用本文:

田佳鑫, 魏士飞, 李仕明, 刘含若, 张青, 崔焱, 郭静云, 黄叶权, 冬雪川, 王宁利. 基于光学成像屈光补偿技术对视网膜屈光状态测量方法的研究[J]. 中华眼科医学杂志(电子版), 2020, 10(03): 135-140.

Jiaxin Tian, Shifei Wei, Shiming Li, Hanruo Liu, Qing Zhang, Yan Cui, Jingyun Guo, Yequan Huang, Xuechuan Dong, Ningli Wang. A refractive state measurement for retina based on optical imaging refractive compensation technology[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2020, 10(03): 135-140.

目的

探讨采用光学成像屈光补偿技术测量人眼视网膜屈光状态的可行性。

方法

利用基于屈光补偿进行视网膜成像屈光状态的检测方法对模拟眼进行屈光度检测。分别设定模拟眼屈光状态为-3.00 D、-2.00 D、-1.00 D、0 D、+1.00 D、+2.00 D及+3.00 D。在不同屈光状态下,分别测量模拟眼的屈光度10次。记录每次模拟眼的理论屈光度、图案板距离以及实际测量的屈光度。不同屈光状态下测量的屈光度值,采用均数±标准差表示。计算测量值相对于理论值的偏倚,即模拟眼屈光不正的理论值与测量值平均值的差值。采用组内相关系数,分析理论值与测量值的一致性。

结果

当模拟眼的屈光状态设定为-3.00 D、-2.00 D、-1.00 D、0 D、+1.00 D、+2.00 D及+3.00 D时,基于屈光补偿测量视网膜屈光度的平均值分别为(2.99±0.07)D、(-1.98±0.07)D、(-0.96±0.07)D、(0.19±0.07)D、(1.18±0.10)D、(2.37±0.11)D及(3.48±0.09)D;测量的偏倚分别为-0.01 D、-0.02 D、-0.04 D、-0.19 D、-0.18 D、-0.37 D及-0.48 D。经Pearson相关分析,模拟眼测量偏倚的绝对值与理论屈光度成正相关,且具有统计学意义(r=0.964,P<0.05)。10次实际测量的平均值与理论值有较好的一致性,具有统计学意义(ICC=0.997,P<0.05)。当模拟眼处于-3.00 D、-2.00 D及-1.00 D(即屈光状态为近视)时,累计共测量30次。结果模拟眼理论屈光度与实际测量值有较好的一致性,具有统计学意义(ICC=0.996,P<0.05)。当模拟眼处于+1.00 D、+2.00 D及+3.00 D(即屈光状态为远视)时,累计共测量30次。结果模拟眼理论屈光度与实际测量值有较好的一致性,具有统计学意义(ICC=0.984,P<0.05)。

结论

在模拟眼中基于屈光补偿技术进行视网膜成像屈光状态的测量方法准确且有效,该测量方法具有可行性。

Objective

To explore the feasibility of using refractive compensation technology through optical imaging to measure the retinal refractive state.

Methods

The refractive states of simulation eyes were measured by refractive compensation to retinal imaging. The diopters were measured for 10 times under different refractive states. The theoretical diopters, pattern plate distance, and the measured diopters were recorded at each time. Mean ± standard deviation was used to indicate the diopter value under different refractive states. The bias, which was defined as the difference between the the oretical diopter and the mean of the measured diopters, was calculated. The internal correlation coefficient (ICC) was analyzed for the consistency of the theoretical diopters and the measured diopters.

Results

When the theoretical diopters of the simulation eye were set as -3.00 D, -2.00D, -1.00 D, 0.00 D, + 1.00 D, + 2. 00 D, and + 3.00 D, the measured diopters based on refractive compensation to retinal imaging at different refractive states were (2.90±0.07) D, (-1.98±0.07) D, (-0.96±0.07) D, (0.19±0.07) D, (1.18±0.10) D, (2.37±0.1) D, and (3.48±0.09) D, respectively; the biases were -0.01 D, -0.02 D, -0.04 D, -0.19 D, -0.18 D, -0.37 D, -0.48 D, respectively.Pearson correlation analysis showed the absolute values of the bias was positively correlated with the theoretical diopters(r=0.964, P<0.05). The mean of measured diopter in 10 times was in good agreement with the theoretical diopter. There was a statistical significance between results (ICC=0.997, P<0.05). When the simulation eyeswere set as -3.00 D, -2.00 D, and -1.00 D, which were simulated myopia, 30 times of measurements were made.The result showed the theoretical diopters of the simulation eye were in good agreement with the measured diopters with statistical significance (ICC=0.996, P<0.05). When the simulation eyes were set as + 3.00 D, + 2.00 D, and + 1.00 D, which were simulated hyperopia, 30 times of measurements were made. The result showed the theoretical diopters of the simulation eye were in good agreement with the measured diopters with statistical significance (ICC=0.984, P<0.05).

Conclusions

The measurement of refractive state by refractive compensation to retinal imaging in the simulation eye is accurate, effective, and feasible.

图5 模拟眼的理论屈光度与实测屈光度的对比图 随着模拟眼图案板距离的减少,模拟眼屈光度的理论值和实际测量值逐渐增加,理论值与实测值差异逐渐加大
表1 不同屈光状态下模拟眼理论值与测量值的比较及相关性分析
表2 模拟眼屈光状态的测量结果和一致性分析
[1]
呼正林. 眼科屈光矫正学[M]. 北京:军事医学科学出版社,2011:88-101.
[2]
王玉良. 李凯. 眼视光学[M]. 北京:人民军医出版社,2008:19-36.
[3]
李凤鸣. 眼科全书(下册)[M]. 北京:人民卫生出版社,1996:2518-2688.
[4]
金晨晖,滕坚. 新型检影模拟眼的设计理论分析[J]. 中国组织工程研究与临床康复200812(26):5091-5094.
[5]
徐广第. 眼科屈光学[M]. 北京:军事医学科学出版社,2001:36-37.
[6]
孙强,贺翔鸽,刘少章. 自动电脑验光仪及其应用 [J]. 眼科新进展200020(5):383-384.
[7]
Pappas CJ, Anderson DR, Briese FW. Clinical Evaluation of the 6600 Autorefractor [J]. Arch Ophthalmol, 1978, 96(6): 993-996.
[8]
Goss DA, Grosvenor T. Reliability of refraction-a literature review [J]. J Am Optom Assoc, 1996, 67(10): 619-630.
[9]
王英丽. 电脑验光仪的使用[J]. 中国眼镜科技杂志2020(3):90-95.
[10]
Sheppard AL, Davies LN. Clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500 [J]. Ophthalmic Physiol Opt, 2010, 30(2): 143-151.
[11]
Gordon-Shaag A, Pinero DP, Kahloun C, et al. Validation of refraction and anterior segment parameters by a new multi-diagnostic platform (VX120) [J]. J Optom, 2018, 11(4): 242-251.
[12]
Paudel N, Adhikari S, Thakur A, et al. Clinical Accuracy of the Nidek ARK-1 Autorefractor[J]. Optom Vis Sci, 2019, 96(6): 407-413.
[13]
Wosik J, Patrzykont M, Pniewski J. Comparison of refractive error measurements by three different models of autorefractors and subjective refraction in young adults [J]. J Opt Soc Am A Opt Image Sci Vis, 2019, 36(4): B1-B6
[14]
Mirzajani A, Qasemi F, Asharlous A, et al. Are the results of handheld auto-refractometer as valid as the result of table-mounted refractometer? [J]. J Curr Ophthalmol, 2018, 31(3): 305-311.
[15]
Hashemi H, Asgari S, Miraftab M, et al. Agreement study of keratometric values measured by Biograph/LENSTAR, auto-kerato-refractometer and Pentacam: Decision for IOL calculation [J]. Clin Exp Optom, 2014, 97(5): 450-455.
[16]
瞿佳. 视光学理论和方法[M]. 北京:北京人民卫生出版社,2004:9-113.
[17]
Ko DS, Lee BH. Optics of Refractometers for Refractive Power Measurement of the Human Eye [J]. 2006, 10(4): 145-156.
[18]
陈英,杨智宽. 周边视网膜相对屈光度与近视进展的关系 [J]. 中华眼视光学与视觉科学杂志201214(10):637-640.
[19]
Hoogerheide J, Rempt F, Hoogenboom WP. Acquired myopia in young pilots [J]. Ophthalmologica. 1971, 163(4):209-215.
[20]
Zi Y, Deng Y, Zhao J, et al. Morphologic and biochemical changes in the retina and sclera induced by form deprivation high myopia in guinea pigs [J]. BMC Ophthalmol, 2020, 20(1): 105.
[21]
Smith EL, Kee C, Ramamirtham R, et al. Peripheral vision can influence eye growth and refractive development in infant monkeys [J]. Invest Ophthalmol Vis Sci, 2005, 46(11): 3965-3972.
[22]
Benavente-Pérez A, Nour A, Troilo D. Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus [J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6765-6773.
[23]
Irving EL, Yakobchuk-Stanger C. Myopia progression control lens reverses induced myopia in chicks [J]. Ophthalmic Physiol Opt, 2017, 37(5): 576-584.
[24]
刘波,汪辉. 硬性透气性角膜接触镜、渐进多焦镜和单光眼镜对青少年近视进展的延缓作用比较 [J]. 中华眼视光学与视觉科学杂志201012(3):218-220.
[25]
Chen R, Yu J, Lipson M, et al. Comparison of four different orthokeratology lenses in controlling myopia progression [J]. Cont Lens Anterior Eye, 2020, 43(1): 78-83.
[26]
杨洋,张明洲,吕会斌,等. 周边离焦软性角膜接触镜与单焦点软性角膜接触镜对青少年近视进展控制效果的Meta分析[J/CD]. 中华眼科医学杂志(电子版)20177(1):25-31.
[27]
陈志,瞿小妹,周行涛. 角膜塑形镜对周边屈光度的影响及其作用机制 [J]. 中华眼视光学与视觉科学杂志201214(2):74-78.
[28]
Lee EJ, Lim DH, Chung T, et al. Association of Axial Length Growth and Topographic Change in Orthokeratology [J]. Eye Contact Lens, 2018, 44(5): 292-298.
[29]
Li SM, Li SY, Liu LR, et al. Peripheral refraction in 7- and 14-year-old children in central China: the Anyang Childhood Eye Study [J]. Br J Ophthalmol, 2015, 99(5): 674-679.
[30]
Sng CC, Lin XY, Gazzard G, et al. Peripheral refraction and refractive error in Singapore Chinese children [J]. Invest Ophthalmol Vis Sci, 2011, 52(2): 1181-1190.
[31]
Kang P, Gifford P, McNamara P, et al. Peripheral refraction in different ethnicities [J]. Invest Ophthalmol Vis Sci, 201051(11): 6059-6065.
[32]
Hartwig A, Charman WN, Radhakrishnan H. Baseline peripheral refractive error and changes in axial refraction during one year in a young adult population [J]. J Optom, 2015, 9(1): 32-39
[33]
Faria-Ribeiro M, Queirós A, Lopes-Ferreira D, et al. Peripheral Refraction and Retinal Contour in Stable and Progressive Myopia [J]. Optom Vis Sci, 2013, 90(1): 9-15.
[34]
Radhakrishnan H, Allen PM, Calver RI, et al. Peripheral refractive changes associated with myopia progression [J]. Invest Ophthalmol Vis Sci, 2013, 54(2): 1573-1581.
[35]
Atchison DA, Shi-Ming L, He L, et al. Relative Peripheral Hyperopia Does Not Predict Development and Progression of Myopia in Children [J]. Invest Ophthalmol Vis Sci, 2015, 56(10): 6162-6170.
[36]
Sng CCA, Lin X, Gazzard G, et al. Change in peripheral refraction over time in Singapore Chinese children [J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 7880-7887.
[1] 黄珈瑶, 林满霞, 田文硕, 何璟怡, 赖佳明, 谢晓燕, 龙海怡. 健康成人胰腺剪切波弹性成像的可行性和测量值及其影响因素[J]. 中华医学超声杂志(电子版), 2023, 20(05): 524-529.
[2] 马建勋, 杨屹立. 全腹腔镜下吻合技术在腹腔镜胃癌根治术中的安全性及可行性研究[J]. 中华普外科手术学杂志(电子版), 2020, 14(04): 417-419.
[3] 罗泽斌, 陈龙林, 杨贤杰, 周伟洲, 鲍向英. 保留左结肠动脉的腹腔镜直肠前切除术的可行性研究[J]. 中华普外科手术学杂志(电子版), 2020, 14(04): 354-356.
[4] 蒲国士, 张永娟, 柏茂树. 全胃切除术中经胰后入路清扫脾门淋巴结的安全性及可行性分析[J]. 中华普外科手术学杂志(电子版), 2020, 14(03): 281-284.
[5] 李庆, 侯花屏. 胰体尾局部病变患者腹腔镜保留脾脏的胰体尾切除术的可行性研究[J]. 中华普外科手术学杂志(电子版), 2020, 14(02): 197-200.
[6] 姜慧员, 刘海义, 白文启, 王文渊, 梁艳杰, 王艳, 江波. 腹腔镜辅助右半结肠癌D3根治术临床安全性及可行性研究[J]. 中华普外科手术学杂志(电子版), 2019, 13(05): 454-457.
[7] 仇馨颐, 沈洁芳. 无功能性肾上腺肿瘤实施日间手术的可行性评估[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(01): 49-52.
[8] 宁鹏涛, 俞德梁, 高博欣, 徐蕾, 刘小南. 基于日间管理模式的高龄腹股沟疝Lichtenstein手术25例分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 186-190.
[9] 邓超, 陈超, 易波, 王五艺, 郭奇, 赵滨, 付川川, 芮元祎, 郑阳春. 结直肠癌标本经直肠拖出术中肿瘤和肠腔周径测量的应用[J]. 中华腔镜外科杂志(电子版), 2022, 15(06): 336-340.
[10] 夏阿东, 王巍, 白光, 张一范, 杨涛, 黄寅鹏. 腹腔镜肝切除评分模型可行性分析[J]. 中华腔镜外科杂志(电子版), 2020, 13(03): 166-172.
[11] 高峰, 徐明, 杨增强, 张维胜, 吴伟强, 宋枫, 高华, 马启星, 孟军军. 达芬奇手术机器人在全结肠切除手术中的应用研究[J]. 中华结直肠疾病电子杂志, 2020, 09(02): 173-177.
[12] 苏学刚, 管征, 李强, 冷非, 白大勇. 部分调节性内斜视屈光状态与双眼单视功能的相关性研究[J]. 中华眼科医学杂志(电子版), 2019, 09(06): 342-347.
[13] 冯燕梅, 刘勋, 邓辉胜, 郭睿. 运用可视化穿刺系统建立微创急诊腹部探查影像系统的可行性研究[J]. 中华重症医学电子杂志, 2019, 05(04): 334-337.
[14] 朴成林, 蓝炘, 司振铎, 冯健, 安峰铎, 李强, 谈明坤, 赵娜, 冷建军. 局部晚期右半结肠癌行结肠癌根治联合胰十二指肠切除术疗效分析:附5例报告[J]. 中华临床医师杂志(电子版), 2023, 17(06): 666-670.
[15] 梁君, 褚晨宇, 孙凤艳, 袁仪浪, 周曦, 王卫东. 胸壁完全植入式静脉输液港术中隧道针逆向穿刺的可行性和安全性[J]. 中华介入放射学电子杂志, 2023, 11(04): 310-313.
阅读次数
全文


摘要