[1] |
De Moraes CG, Demirel S, Gardiner SK, et al. Effect of treatment on the rate of visual field change in the ocular hypertension treatment study observation group[J]. Investigative ophthalmology & visual science, 2012, 53(4): 1704-1709.
|
[2] |
Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study[J]. Ophthalmology, 2010, 117(2): 259-266.
|
[3] |
Zhang Z, Wu S, Jonas JB, et al. Dynein, kinesin and morphological changes in optic nerve axons in a rat model with cerebrospinal fluid pressure reduction: the Beijing Intracranial and Intraocular Pressure (iCOP) study[J]. Acta Ophthalmol, 2016, 94(3): 266-275.
|
[4] |
Yang D, Fu J, Hou R, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys[J]. Investigative ophthalmology & visual science, 2014, 55(5): 3067-3073.
|
[5] |
Zhang Z, Liu D, Jonas JB, et al. Axonal Transport in the Rat Optic Nerve Following Short-Term Reduction in Cerebrospinal Fluid Pressure or Elevation in Intraocular Pressure[J]. Investigative ophthalmology & visual science, 2015, 56(8): 4257-4266.
|
[6] |
Jonas JB, Wang N, Yang D. Translamina Cribrosa Pressure Difference as Potential Element in the Pathogenesis of Glaucomatous Optic Neuropathy[J]. Asia Pac J Ophthalmol (Phila), 2016, 5(1): 5-10.
|
[7] |
Liu L, Li X, Killer HE, et al. Changes in retinal and choroidal morphology after cerebrospinal fluid pressure reduction: a Beijing iCOP study[J]. Science China Life sciences, 2019, 62(2): 268-271.
|
[8] |
Marangoni D, Falsini B, Colotto A, et al. Subfoveal choroidal blood flow and central retinal function in early glaucoma[J]. Acta Ophthalmol, 2012, 90(4): e288-294.
|
[9] |
Deokule S, Vizzeri G, Boehm A, et al. Weinreb RN. Association of visual field severity and parapapillary retinal blood flow in open-angle glaucoma[J]. J Glaucoma, 2010, 19(5): 293-298.
|
[10] |
Logan JF, Rankin SJ, Jackson AJ. Retinal blood flow measurements and neuroretinal rim damage in glaucoma[J]. The British journal of ophthalmology, 2004, 88(8): 1049-1054.
|
[11] |
Popa-Cherecheanu A, Schmidl D, Werkmeister RM, et al. Regulation of Choroidal Blood Flow During Isometric Exercise at Different Levels of Intraocular Pressure[J]. Investigative ophthalmology & visual science, 2019, 60(1): 176-182.
|
[12] |
Triolo G, Rabiolo A, Shemonski ND, et al. Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients[J]. Investigative ophthalmology & visual science, 2017, 58(13): 5713-5722.
|
[13] |
Moghimi S, Zangwill LM, Penteado RC, et al. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma[J]. Ophthalmology, 2018, 125(11): 1720-1728.
|
[14] |
Yarmohammadi A, Zangwill LM, Manalastas PIC, et al. Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss[J]. Ophthalmology, 2018, 125(4): 578-587.
|
[15] |
Lee CY, Liu CH, Chen HC, et al. Correlation between Basal Macular Circulation and Following Glaucomatous Damage in Progressed High-Tension and Normal-Tension Glaucoma[J]. Ophthalmic Res, 2019, 62(1): 46-54.
|
[16] |
Ghahari E, Bowd C, Zangwill LM, et al. Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma[J]. American journal of ophthalmology, 2019, 204: 51-61.
|
[17] |
Sehi M, Goharian I, Konduru R, et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage[J]. Ophthalmology, 2014, 121(3): 750-758.
|
[18] |
Kurysheva NI. Assessment of the optic nerve head, peripapillary, and macular microcirculation in the newly diagnosed patients with primary open-angle glaucoma treated with topical tafluprost and tafluprost/timolol fixed combination[J]. Taiwan journal of ophthalmology, 2019, 9(2): 93-99.
|
[19] |
Iwase T, Akahori T, Yamamoto K, et al. Evaluation of optic nerve head blood flow in response to increase of intraocular pressure[J]. Scientific reports, 2018, 8(1): 17235.
|
[20] |
Muller VC, Storp JJ, Kerschke L, et al. Diurnal variations in flow density measured using optical coherence tomography angiography and the impact of heart rate, mean arterial pressure and intraocular pressure on flow density in primary open-angle glaucoma patients[J]. Acta Ophthalmol, 2019, 97(6): e844-e849.
|
[21] |
Xu J, Li Y, Song S, et al. Evaluating changes of blood flow in retina, choroid, and outer choroid in rats in response to elevated intraocular pressure by 1300nm swept-source OCT[J]. Microvasc Res, 2019, 121: 37-45.
|
[22] |
Hashimoto R, Sugiyama T, Ubuka M, et al. Autoregulation of Optic Nerve Head Blood Flow Induced by Elevated Intraocular Pressure during Vitreous Surgery[J]. Current eye research, 2017, 42(4): 625-628.
|
[23] |
Zeboulon P, Leveque PM, Brasnu E, et al. Effect of Surgical Intraocular Pressure Lowering on Peripapillary and Macular Vessel Density in Glaucoma Patients: An Optical Coherence Tomography Angiography Study[J]. J Glaucoma, 2017, 26(5): 466-472.
|
[24] |
Moss HE, Vangipuram G, Shirazi Z, et al. Retinal Vessel Diameters Change Within 1 Hour of Intracranial Pressure Lowering[J]. Transl Vis Sci Technol, 2018, 7(2): 6.
|
[25] |
Henkind P. Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative[J]. The British journal of ophthalmology. 1967, 51(2): 115-123.
|
[26] |
Chandrasekera E, An D, McAllister IL, et al. Three-Dimensional Microscopy Demonstrates Series and Parallel Organization of Human Peripapillary Capillary Plexuses[J]. Investigative ophthalmology &visual science, 2018, 59(11): 4327-4344.
|
[27] |
Nitta K, Sugiyama K, Wajima R, et al. Associations between changes in radial peripapillary capillaries and occurrence of disc hemorrhage in normal-tension glaucoma[J]. Graefe's archive for clinical and experimental ophthalmology, 2019, 257(9): 1963-1970.
|
[28] |
Jia Y, Simonett JM, Wang J, et al. Wide-Field OCT Angiography Investigation of the Relationship Between Radial Peripapillary Capillary Plexus Density and Nerve Fiber Layer Thickness[J]. Investigative ophthalmology & visual science, 2017, 58(12): 5188-5194.
|
[29] |
Alterman M, Henkind P. Radial peripapillary capillaries of the retina. II. Possible role in Bjerrum scotoma[J]. The British journal of ophthalmology. 1968, 52(1): 26-31.
|
[30] |
Markert JE, Jasien JV, Turner DC, et al. IOP, IOP Transient Impulse, Ocular Perfusion Pressure, and Mean Arterial Pressure Relationships in Nonhuman Primates Instrumented With Telemetry[J]. Investigative ophthalmology & visual science, 2018, 59(11): 4496-4505.
|
[31] |
Tham YC, Lim SH, Gupta P, et al. Inter-relationship between ocular perfusion pressure, blood pressure, intraocular pressure profiles and primary open-angle glaucoma: the Singapore Epidemiology of Eye Diseases study[J]. The British journal of ophthalmology, 2018, 102(10): 1402-1406.
|
[32] |
Cantor E, Mendez F, Rivera C, et al. Blood pressure, ocular perfusion pressure and open-angle glaucoma in patients with systemic hypertension[J]. Clinical ophthalmology, 2018, 12: 1511-1517.
|
[33] |
Flammer J, Konieczka K, Flammer AJ. The primary vascular dysregulation syndrome: implications for eye diseases[J]. EPMA J, 2013, 4(1): 14.
|
[34] |
Konieczka K, Erb C. Diseases potentially related to Flammer syndrome[J]. EPMA J, 2017, 8(4): 327-332.
|
[35] |
Konieczka K, Choi HJ, Koch S, et al. Relationship between normal tension glaucoma and Flammer syndrome[J]. EPMA J, 2017, 8(2): 111-117.
|
[36] |
Pasquale LR, Hanyuda A, Ren A, et al. Nailfold Capillary Abnormalities in Primary Open-Angle Glaucoma: A Multisite Study[J]. Investigative ophthalmology & visual science, 2015, 56(12): 7021-7028.
|
[37] |
Bozic M, Sencanic PH, Spahic G, et al. Is nail fold capillaroscopy useful in normotensive and primary open angle glaucoma? A pilot study[J]. Current eye research, 2010, 35(12): 1099-1104.
|
[38] |
Kosior-Jarecka E, Bartosinska J, Lukasik U, et al. Results of Nailfold Capillaroscopy in Patients with Normal-Tension Glaucoma[J]. Current eye research, 2018, 43(6): 747-753.
|
[39] |
Park HY, Jung KI, Na KS, Park SH, Park CK. Visual field characteristics in normal-tension glaucoma patients with autonomic dysfunction and abnormal peripheral microcirculation[J]. Am J Ophthalmol, 2012, 154(3): 466-475, e461.
|
[40] |
Bata AM, Fondi K, Witkowska KJ, et al. Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma[J]. Acta Ophthalmol, 2019, 97(1): e36-e41.
|