切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (05) : 273 -280. doi: 10.3877/cma.j.issn.2095-2007.2019.05.003

论著

颅内压下降所致眼颅压力梯度增大对视盘血流密度影响的临床研究
刘祥祥1, 林丹婷1, 孙云晓1, 甘嘉禾1, 金杉杉1, 玛依努尔·于苏甫1, 王宁利1,()   
  1. 1. 100730 首都医科大学附属北京同仁医院眼科中心 北京市眼科研究所 北京市眼科学与视觉科学重点实验室
  • 收稿日期:2019-09-16 出版日期:2019-10-28
  • 通信作者: 王宁利
  • 基金资助:
    国家自然科学基金(GZR-2012-009); 北京市自然科学基金(BJZR-2011-004); 国家科技支撑计划(KJB-KJZC-2011-001)

Effect of increasing trans lamina cribrosa pressure difference due to lowering intracranial pressure on optic blood flow density

Xiangxiang Liu1, Danting Lin1, Yunxiao Sun1, Jiahe Gan1, Shanshan Jin1, Yusufu Mayinuer1, Ningli Wang1,()   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing 100730, China
  • Received:2019-09-16 Published:2019-10-28
  • Corresponding author: Ningli Wang
引用本文:

刘祥祥, 林丹婷, 孙云晓, 甘嘉禾, 金杉杉, 玛依努尔·于苏甫, 王宁利. 颅内压下降所致眼颅压力梯度增大对视盘血流密度影响的临床研究[J]. 中华眼科医学杂志(电子版), 2019, 09(05): 273-280.

Xiangxiang Liu, Danting Lin, Yunxiao Sun, Jiahe Gan, Shanshan Jin, Yusufu Mayinuer, Ningli Wang. Effect of increasing trans lamina cribrosa pressure difference due to lowering intracranial pressure on optic blood flow density[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(05): 273-280.

目的

探讨颅内压(ICP)下降所致眼颅压力梯度(TLPD)增大与视盘血流密度改变的相关关系。

方法

前瞻性病例对照研究。收集2018年9月至2018年12月北京同仁医院神经内科行腰椎穿刺(LP)收集脑脊液后ICP降低的患者20例(26只眼)为实验组。其中,男性8例(12只眼),女性12例(14只眼);年龄23~61岁,平均年龄(41.7±2.8)岁;收集健康志愿者13例(26只眼)为对照组。其中,男性5例(10只眼),女性8例(16只眼);年龄21~62岁,年龄(46.9±2.7)岁。检测实验组患者的眼内压(IOP)、ICP、脑脊液压力(CSFP)、TLPD、眼灌注压(OPP)及血压;检测对照组健康志愿者的IOP、OPP及血压;根据CSFP计算ICP下降程度(CSFP)。实验组,根据CSFP分为亚组A(15 mmH2O<CSFP≤30 mmH2O,6只眼)、亚组B(30 mmH2O<CSFP≤45 mmH2O,5只眼)及亚组C(CSFP >45 mmH2O,15只眼)等三个亚组。实验组患者记录脑脊液初压与末压,并于LP前和LP后15 min进行眼底相干光层析血管成像(OCTA)检查,测量视盘区血流密度;对照组,检查其在与LP患者相同体位改变前后的视盘区血流密度。应用配对t检验分别评估两组组内IOP、血压、OPP及视盘区血流密度变化情况和实验组各亚组内视盘区血流密度在不同程度ICP改变后的变化情况。

结果

对照组在体位改变后IOP、OPP、视盘区及各象限血流密度均未发现明显改变,差异无统计学意义(t=0.061,-0.361;P>0.05)。实验组LP后ICP由(11.8±2.2)mmHg下降至(7.8±2.0)mmHg,差异有统计学意义(t=13.061,P<0.05);TLPD由(5.2±3.2)mmHg升高至(9.3±2.9)mmHg,差异有统计学意义(t=-8.621, P<0.05);视盘内、视盘周及视盘周毛细血管血流密度均明显下降,差异有统计学意义(t=2.502, 3.848, 3.389;P<0.05)。在ICP下降超过45 mmH2O时,视盘周平均血流密度及视盘周毛细血管血流密度改变最明显,差异有统计学意义(t=4.043, 4.332;P<0.05)。

结论

ICP下降所致的TLPD增大可导致视盘区血供减少,同时引起视盘周毛细血管微循环障碍,ICP下降程度越大,视盘区微循环异常越显著。

Objective

To investigate the relationship between the increasing trans lamina cribrosa pressure difference (TLPD) due to lowering intracranial pressure (ICP) and optic disc blood flow density.

Methods

Prospective case-control study. From September 2018 to December 2018, the study group recruited 20 patients (26 eyes) with an average age of (41.7±2.8) years old ranging from 37.8 years old to 67.2 years old, including 8 males(12 eyes) and 12 females(14 eyes), who admitted to the Department of Neurology of Beijing Tongren Hospital and underwent lumbar puncture (LP) with reduced intracranial pressure after collecting cerebrospinal fluid. The control group recruited 13 healthy volunteers (26 eyes) with an average age of (46.9±2.7) years old ranging from 34.5 years old to 69.4 years old and included 5 males (10 eyes) and 8 females(16 eyes). The study group were divided into three subgroups according to the reduction degree of cerebrospinal fluid pressure (CSFP) including sub-group A (15 mmH2O<CSFP≤30 mmH2O, 6 eyes), sub-group B (30 mmH2O<CSFP≤45 mmH2O, 5 eyes), sub-group C (CSFP>45 mmH2O, 15 eyes). OCTA scans, IOP and BP were acquired before and 15 minutes after in patients undergoing lumbar puncture (LP) and collecting cerebrospinal fluid samples and leading to a lower ICP level in the study group, respectively. Same parameters measurements were taken in the control group when the subjects performed the same body position change with LP procedure. The paired t-test was used to evaluate the changes of intraocular pressure, blood pressure, intraocular pressure and optic disc blood flow density within the two groups, and the flow density differences of the optic disc area among subgroups after varied reduction of intracranial pressure.

Results

In the control group, after body position changing, there was no significant changes in the intraocular pressure, optic blood flow density (t=0.061, -0.361; P>0.05). In the study group, ICP was significantly decreased from (11.8±2.2) mmHg to (7.8±2.0) mmHg (t=13.061, P<0.05), while TLPD was increasing by (9.3±2.9) mmHg from (5.2±3.2) mmHg (t=-8.621, P<0.05). Optic disc blood flow density inside disc, peripapillary, and peripapillary capillaries decreased significantly after ICP lowering, respectively (t=2.502, 3.848, 3.389; P<0.05). When the ICP decreased more than 45mmH2O, the blood flow density in peripapillary and peripapillary capillaries decreased significantly (t=4.043, 4.332; P<0.05).

Conclusions

Increased TLPD due to lowering ICP caused a significant decreasing in optic blood flow density and led to optic microvascular circulation abnormality. With a more severe reduction of ICP, a more significant abnormality of optic microvascular circulation was observed.

表1 实验组患者与对照组健康志愿者基本检查项目的比较(±s)
图1 实验组患者与对照组健康志愿者压力参数的变化情况 图A显示实验组患者眼内压、颅内压、眼颅压力梯度及眼灌注压的变化情况;图B显示对照组健康志愿者眼内压与眼灌注压的变化情况
表2 实验组患者与对照组健康志愿者压力参数的比较(±s,mmHg)
图2 实验组患者与对照组健康志愿者视盘区血流图像的对比 图A、B示实验组患者基线视盘区血流;图C、D示实验组患者颅内压下降后视盘区血流;图E、F示对照组健康志愿者基线视盘区血流;图G、H示对照组健康志愿者卧位45 min后视盘区血流
表3 实验组患者与对照组健康志愿者视盘区血流密度的变化情况(±s,%)
表4 实验组患者不同颅内压下降程度对视盘血流密度影响(±s,%)
分组 眼数 视盘区血流密度
视盘内 视盘内毛细血管 视盘周 视盘周毛细血管 鼻上侧 鼻下侧 颞上侧 颞下侧 上方鼻侧 上方颞侧 下方鼻侧 下方颞侧
亚组A 6                        
  基线   62.10±1.24 51.99±0.99 58.53±4.42 51.54±5.09 49.50±5.38 46.97±5.94 52.68±6.06 50.17±4.31 50.12±7.18 54.88±7.36 56.93±6.70 53.34±4.27
  颅内压下降后   61.48±2.24 52.44±3.52 58.37±3.32 51.36±3.80 48.50±4.01 46.82±5.36 52.19±5.81 50.60±2.71 50.77±5.66 53.47±6.78 56.86±5.23 54.44±2.24
亚组B 5                        
  基线   63.31±2.24 52.94±1.94 61.14±1.81 54.21±1.48 51.15±4.25 50.29±4.25 57.56±2.05 54.89±2.74 52.83±2.66 57.17±4.09 53.28±2.92 58.77±4.18
  颅内压下降后   62.20±2.67 51.87±2.67 60.34±1.63 53.20±1.36 50.09±3.49 48.86±3.21 57.16±1.62 54.36±1.72 50.63±1.25 56.09±4.37 51.87±2.54 59.05±3.38
亚组C 15                        
  基线   60.91±3.54 50.90±4.50 57.82±5.13 51.12±5.48 47.74±5.67 47.28±6.17 54.35±6.48 51.75±3.92 48.52±6.91 53.28±9.01 52.18±7.51 56.33±5.46
  颅内压下降后   59.83±3.93 50.16±4.23 56.25±5.45 49.68±5.62 46.76±5.79 45.65±5.79 52.94±6.67 49.18±4.68 47.44±7.25 51.32±8.56 50.78±6.81 55.62±4.64
t亚组A   0.665 -0.335 0.288 0.263 1.123 0.296 0.728 -0.386 -0.705 1.331 -1.019 0.065
t亚组B   2.453 2.071 2.234 2.350 1.353 2.168 0.682 0.711 2.380 1.817 2.445 -0.401
t亚组C   1.896 1.025 4.043 3.332 2.106 2.517 2.940 4.630 1.411 2.534 1.851 1.118
P亚组A   >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
P亚组B   >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
P亚组C   >0.05 >0.05 <0.05 <0.05 >0.05 <0.05 <0.05 <0.05 >0.05 <0.05 >0.05 >0.05
[1]
De Moraes CG, Demirel S, Gardiner SK, et al. Effect of treatment on the rate of visual field change in the ocular hypertension treatment study observation group[J]. Investigative ophthalmology & visual science, 2012, 53(4): 1704-1709.
[2]
Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study[J]. Ophthalmology, 2010, 117(2): 259-266.
[3]
Zhang Z, Wu S, Jonas JB, et al. Dynein, kinesin and morphological changes in optic nerve axons in a rat model with cerebrospinal fluid pressure reduction: the Beijing Intracranial and Intraocular Pressure (iCOP) study[J]. Acta Ophthalmol, 2016, 94(3): 266-275.
[4]
Yang D, Fu J, Hou R, et al. Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys[J]. Investigative ophthalmology & visual science, 2014, 55(5): 3067-3073.
[5]
Zhang Z, Liu D, Jonas JB, et al. Axonal Transport in the Rat Optic Nerve Following Short-Term Reduction in Cerebrospinal Fluid Pressure or Elevation in Intraocular Pressure[J]. Investigative ophthalmology & visual science, 2015, 56(8): 4257-4266.
[6]
Jonas JB, Wang N, Yang D. Translamina Cribrosa Pressure Difference as Potential Element in the Pathogenesis of Glaucomatous Optic Neuropathy[J]. Asia Pac J Ophthalmol (Phila), 2016, 5(1): 5-10.
[7]
Liu L, Li X, Killer HE, et al. Changes in retinal and choroidal morphology after cerebrospinal fluid pressure reduction: a Beijing iCOP study[J]. Science China Life sciences, 2019, 62(2): 268-271.
[8]
Marangoni D, Falsini B, Colotto A, et al. Subfoveal choroidal blood flow and central retinal function in early glaucoma[J]. Acta Ophthalmol, 2012, 90(4): e288-294.
[9]
Deokule S, Vizzeri G, Boehm A, et al. Weinreb RN. Association of visual field severity and parapapillary retinal blood flow in open-angle glaucoma[J]. J Glaucoma, 2010, 19(5): 293-298.
[10]
Logan JF, Rankin SJ, Jackson AJ. Retinal blood flow measurements and neuroretinal rim damage in glaucoma[J]. The British journal of ophthalmology, 2004, 88(8): 1049-1054.
[11]
Popa-Cherecheanu A, Schmidl D, Werkmeister RM, et al. Regulation of Choroidal Blood Flow During Isometric Exercise at Different Levels of Intraocular Pressure[J]. Investigative ophthalmology & visual science, 2019, 60(1): 176-182.
[12]
Triolo G, Rabiolo A, Shemonski ND, et al. Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients[J]. Investigative ophthalmology & visual science, 2017, 58(13): 5713-5722.
[13]
Moghimi S, Zangwill LM, Penteado RC, et al. Macular and Optic Nerve Head Vessel Density and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma[J]. Ophthalmology, 2018, 125(11): 1720-1728.
[14]
Yarmohammadi A, Zangwill LM, Manalastas PIC, et al. Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss[J]. Ophthalmology, 2018, 125(4): 578-587.
[15]
Lee CY, Liu CH, Chen HC, et al. Correlation between Basal Macular Circulation and Following Glaucomatous Damage in Progressed High-Tension and Normal-Tension Glaucoma[J]. Ophthalmic Res, 2019, 62(1): 46-54.
[16]
Ghahari E, Bowd C, Zangwill LM, et al. Association of Macular and Circumpapillary Microvasculature with Visual Field Sensitivity in Advanced Glaucoma[J]. American journal of ophthalmology, 2019, 204: 51-61.
[17]
Sehi M, Goharian I, Konduru R, et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage[J]. Ophthalmology, 2014, 121(3): 750-758.
[18]
Kurysheva NI. Assessment of the optic nerve head, peripapillary, and macular microcirculation in the newly diagnosed patients with primary open-angle glaucoma treated with topical tafluprost and tafluprost/timolol fixed combination[J]. Taiwan journal of ophthalmology, 2019, 9(2): 93-99.
[19]
Iwase T, Akahori T, Yamamoto K, et al. Evaluation of optic nerve head blood flow in response to increase of intraocular pressure[J]. Scientific reports, 2018, 8(1): 17235.
[20]
Muller VC, Storp JJ, Kerschke L, et al. Diurnal variations in flow density measured using optical coherence tomography angiography and the impact of heart rate, mean arterial pressure and intraocular pressure on flow density in primary open-angle glaucoma patients[J]. Acta Ophthalmol, 2019, 97(6): e844-e849.
[21]
Xu J, Li Y, Song S, et al. Evaluating changes of blood flow in retina, choroid, and outer choroid in rats in response to elevated intraocular pressure by 1300nm swept-source OCT[J]. Microvasc Res, 2019, 121: 37-45.
[22]
Hashimoto R, Sugiyama T, Ubuka M, et al. Autoregulation of Optic Nerve Head Blood Flow Induced by Elevated Intraocular Pressure during Vitreous Surgery[J]. Current eye research, 2017, 42(4): 625-628.
[23]
Zeboulon P, Leveque PM, Brasnu E, et al. Effect of Surgical Intraocular Pressure Lowering on Peripapillary and Macular Vessel Density in Glaucoma Patients: An Optical Coherence Tomography Angiography Study[J]. J Glaucoma, 2017, 26(5): 466-472.
[24]
Moss HE, Vangipuram G, Shirazi Z, et al. Retinal Vessel Diameters Change Within 1 Hour of Intracranial Pressure Lowering[J]. Transl Vis Sci Technol, 2018, 7(2): 6.
[25]
Henkind P. Radial peripapillary capillaries of the retina. I. Anatomy: human and comparative[J]. The British journal of ophthalmology. 1967, 51(2): 115-123.
[26]
Chandrasekera E, An D, McAllister IL, et al. Three-Dimensional Microscopy Demonstrates Series and Parallel Organization of Human Peripapillary Capillary Plexuses[J]. Investigative ophthalmology &visual science, 2018, 59(11): 4327-4344.
[27]
Nitta K, Sugiyama K, Wajima R, et al. Associations between changes in radial peripapillary capillaries and occurrence of disc hemorrhage in normal-tension glaucoma[J]. Graefe's archive for clinical and experimental ophthalmology, 2019, 257(9): 1963-1970.
[28]
Jia Y, Simonett JM, Wang J, et al. Wide-Field OCT Angiography Investigation of the Relationship Between Radial Peripapillary Capillary Plexus Density and Nerve Fiber Layer Thickness[J]. Investigative ophthalmology & visual science, 2017, 58(12): 5188-5194.
[29]
Alterman M, Henkind P. Radial peripapillary capillaries of the retina. II. Possible role in Bjerrum scotoma[J]. The British journal of ophthalmology. 1968, 52(1): 26-31.
[30]
Markert JE, Jasien JV, Turner DC, et al. IOP, IOP Transient Impulse, Ocular Perfusion Pressure, and Mean Arterial Pressure Relationships in Nonhuman Primates Instrumented With Telemetry[J]. Investigative ophthalmology & visual science, 2018, 59(11): 4496-4505.
[31]
Tham YC, Lim SH, Gupta P, et al. Inter-relationship between ocular perfusion pressure, blood pressure, intraocular pressure profiles and primary open-angle glaucoma: the Singapore Epidemiology of Eye Diseases study[J]. The British journal of ophthalmology, 2018, 102(10): 1402-1406.
[32]
Cantor E, Mendez F, Rivera C, et al. Blood pressure, ocular perfusion pressure and open-angle glaucoma in patients with systemic hypertension[J]. Clinical ophthalmology, 2018, 12: 1511-1517.
[33]
Flammer J, Konieczka K, Flammer AJ. The primary vascular dysregulation syndrome: implications for eye diseases[J]. EPMA J, 2013, 4(1): 14.
[34]
Konieczka K, Erb C. Diseases potentially related to Flammer syndrome[J]. EPMA J, 2017, 8(4): 327-332.
[35]
Konieczka K, Choi HJ, Koch S, et al. Relationship between normal tension glaucoma and Flammer syndrome[J]. EPMA J, 2017, 8(2): 111-117.
[36]
Pasquale LR, Hanyuda A, Ren A, et al. Nailfold Capillary Abnormalities in Primary Open-Angle Glaucoma: A Multisite Study[J]. Investigative ophthalmology & visual science, 2015, 56(12): 7021-7028.
[37]
Bozic M, Sencanic PH, Spahic G, et al. Is nail fold capillaroscopy useful in normotensive and primary open angle glaucoma? A pilot study[J]. Current eye research, 2010, 35(12): 1099-1104.
[38]
Kosior-Jarecka E, Bartosinska J, Lukasik U, et al. Results of Nailfold Capillaroscopy in Patients with Normal-Tension Glaucoma[J]. Current eye research, 2018, 43(6): 747-753.
[39]
Park HY, Jung KI, Na KS, Park SH, Park CK. Visual field characteristics in normal-tension glaucoma patients with autonomic dysfunction and abnormal peripheral microcirculation[J]. Am J Ophthalmol, 2012, 154(3): 466-475, e461.
[40]
Bata AM, Fondi K, Witkowska KJ, et al. Optic nerve head blood flow regulation during changes in arterial blood pressure in patients with primary open-angle glaucoma[J]. Acta Ophthalmol, 2019, 97(1): e36-e41.
[1] 张强, 程铖, 徐日新, 吴彩凤, 谢勇, 刘晓东, 梅宏斌, 曹天庆. 中性粒细胞与淋巴细胞比值对ST段抬高型心肌梗死患者直接经皮冠状动脉介入治疗后微循环障碍的预测价值[J]. 中华危重症医学杂志(电子版), 2020, 13(05): 351-355.
[2] 房高丽, 葛子若, 钱芳, 侯静, 张立松, 马爱民, 孙挥宇, 陈志海. 以听力下降为主要表现的7例神经型布鲁氏菌病患者的临床特点[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(04): 331-335.
[3] 张馨月, 韩帅, 张舒石, 李文臣, 张舒岩. 颅内压监测技术在创伤性颅脑损伤治疗中的应用[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 246-252.
[4] 张付意, 侯现增, 汪建军, 辛涛. 有创颅内压监测靶向管控在重型颅脑损伤患者围术期应用价值分析[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 298-301.
[5] 魏宜功, 周焜, 陈光唐, 王诚, 刘窗溪. 颅内压监测下改良阶梯减压法结合去骨瓣减压治疗颅内高压的疗效分析[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 28-33.
[6] 何鑫, 武秀权, 费舟, 费霏. 与视器相关的无创颅内压监测[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 372-375.
[7] 管诚, 沈剑虹, 管义祥, 陈建静. 标准大骨瓣减压结合腰大池持续引流术对重型颅脑损伤的疗效与预后的影响[J]. 中华神经创伤外科电子杂志, 2021, 07(05): 281-287.
[8] 程岗, 李彦腾, 魏铂沅, 王淑为, 刘帅, 刘邦鑫, 刘亚楠, 张剑宁. 不同海战环境爆炸后比格犬颅内外压力变化特点的实验研究[J]. 中华神经创伤外科电子杂志, 2021, 07(01): 6-11.
[9] 阳建国, 钟兴明, 吴利平. 颅内压监测下控制性减压联合预缝式关颅在重型颅脑损伤手术中的作用探讨[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 265-269.
[10] 胡晓芳, 赵琳, 张尚明, 杨德晓, 王守森. 颅内压监测下降阶梯减压技术在创伤后脑疝患者术中的应用[J]. 中华神经创伤外科电子杂志, 2020, 06(04): 254-256.
[11] 吴昊, 李云雷, 麦麦提力·米吉提, 买吾兰·艾沙, 陈烈兴, 马木提江·木尔提扎, 巴特·龚高昂, 朱国华. 颅内压监测在治疗非脑疝高血压脑出血中的应用及疗效分析[J]. 中华神经创伤外科电子杂志, 2020, 06(03): 151-155.
[12] 曹炜, 王翠雪, 徐珊珊, 袁媛, 张琳琳, 周建新. 不同头高位对aSAH患者术后颅内压及脑灌注压的影响[J]. 中华重症医学电子杂志, 2022, 08(02): 121-125.
[13] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[14] 王煜泽, 高文文, 杨磊, 赵海康. 无创监测技术在脑水肿应用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 113-117.
[15] 陈晨, 徐宏, 李政, 韩杨云. 脑室内颅内压监测在重型颅脑损伤患者围术期的应用研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(03): 146-151.
阅读次数
全文


摘要