[1] |
Bourne RRA, Stevens GA, White RA, et al. Causes of vision loss worldwide, 1990 to 2010: a systematic analysis [J]. Lancet Glob Health, 2013, 1(6): E339-E349.
|
[2] |
Resnikoff S, Pascolini D, Etya'ale D, et al. Global data on visual impairment in the year 2002 [J]. Bull World Health Organ, 2004, 82(11): 844-851.
|
[3] |
Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990 to 2020: a systematic review and meta-analysis [J]. Lancet Glob Health, 2017, 5(12): E1221-E1234.
|
[4] |
Bourne RRA, Jonas JB, Flaxman SR, et al. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990 to 2010 [J]. Br J Ophthalmol, 2014, 98(5): 629-638.
|
[5] |
Congdon N, Vingerling JR, Klein BEK, et al. Prevalence of cataract and pseudophakia/aphakia among adults in the United States [J]. Arch Ophthalmol, 2004, 122(4): 487-494.
|
[6] |
Tang YT, Wang XF, Wang JC, et al. Prevalence of age-related cataract and cataract surgery in a chinese adult population: The Taizhou Eye Study [J]. Invest Ophth Vis Sci, 2016, 57(3): 1193-1200.
|
[7] |
Lin HT, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function [J]. Nature, 2016, 531(7594): 323-328.
|
[8] |
Smith PW, Wong SK, Stark WJ, et al. Complications of semiflexible, closed-loop anterior-chamber intraocular lenses [J]. Arch Ophthalmol, 1987, 105(1): 52-57.
|
[9] |
Yuan XY, Song H, Peng G, et al. Prevalence of corneal astigmatism in patients before cataract surgery in Northern China [J]. J Ophthalmol, 2014, 7.
|
[10] |
LI S, JIE Y. Cataract surgery and lens implantation [J]. Curr Opin Ophthalmol, 2019, 30(1): 39-43.
|
[11] |
He WW, Zhu XJ, Du Y, et al. Clinical efficacy of implantation of toric intraocular lenses with different incision positions: a comparative study of steep-axis incision and non-steep-axis incision [J]. BMC Ophthalmol, 2017, 17(6).
|
[12] |
Khokhar S, Lohiya P, Murugiesan V, et al. Corneal astigmatism correction with opposite clear corneal incisions or single clear corneal incision: Comparative analysis [J]. J Cataract Refract Surg, 2006, 32(9): 1432-1437.
|
[13] |
Panagiotopoulou EK, Ntonti P, Gkika M, et al. Image-guided lens extraction surgery: a systematic review [J]. Int J Ophthalmol, 2019, 12(1): 135-151.
|
[14] |
Allard K, Zetterberg M. Toric IOL implantation in a patient with keratoconus and previous penetrating keratoplasty: a case report and review of literature [J]. BMC Ophthalmol, 2018, 18(1): 215.
|
[15] |
Felipe A, Artigas JM, Diez-Ajenjo A, et al. Residual astigmatism produced by toric intraocular lens rotation [J]. J Cataract Refract Surg, 2011, 37(10): 1895-1901.
|
[16] |
Hura AS, Osher RH. Comparing the Zeiss Callisto Eye and the Alcon Verion Image Guided System Toric Lens Alignment Technologies [J]. J Cataract Refract Surg, 2017, 33(7): 482-487.
|
[17] |
de Oca IM, Kim EJ, Wang L, et al. Accuracy of toric intraocular lens axis alignment using a 3-dimensional computer-guided visualization system [J]. J Cataract Refract Surg, 2016, 42(4): 550-555.
|
[18] |
Elhofi AH, Helaly HA. Comparison between digital and manual marking for toric intraocular lenses: a randomized trial[J]. Medicine(Baltimore), 2015, 94(38): e1618.
|
[19] |
Kim EC, Hwang KY, Lim SA, et al. Accuracy of toric intraocular lens implantation using automated vs manual marking [J]. BMC Ophthalmol, 2019, 19(1): 169.
|
[20] |
Velasco-Barona C, Cervantes-Coste G, Mendoza-Schuster E, et al. Comparison of biometric measurements obtained by the Verion Image-Guided System versus the auto-refracto-keratometer [J]. Int Ophthalmol, 2018, 38(3): 951-957.
|
[21] |
Ruiz-Belda C, Rodrigo F, Pinero DP. alidation of keratometric measurements obtained with an intraoperative image-guided system: intra-session repeatability and interchangeability with an optical biometer [J]. Clin Exp Optom, 2018, 101(2): 200-205.
|
[22] |
Eom Y, Kang SY, Song JS, et al. Effect of effective lens position on cylinder power of toric intraocular lenses [J]. Can J Ophthalmol, 2015, 50(1): 26-32.
|
[23] |
中华医学会眼科学分会白内障与人工晶状体学组. 我国散光矫正型人工晶状体临床应用专家共识(2017年)[J]. 中华眼科杂志,2017,53(1): 7-10.
|
[24] |
Thibos LN, Bradley A, Zhang XX. Effect of ocular chromatic aberration on monocular visual performance [J]. Optom Vis Sci, 1991, 68(8): 599-607.
|
[25] |
Zhang M, Qian D, Jing Q, et al. Analysis of corneal spherical aberrations in cataract patients with high myopia [J]. Sci Rep, 2019, 9(1): 1420.
|
[26] |
Zhang M, Jing Q, Chen J, et al. Analysis of corneal higher-order aberrations in cataract patients with high myopia [J]. J Cataract Refract Surg, 2018, 44(12): 1482-1490.
|
[27] |
Yamaguchi T, Negishi K, Ono T, et al. Feasibility of spherical aberration correction with aspheric intraocular lenses in cataract surgery based on individual pupil diameter [J]. J Cataract Refract Surg, 2009, 35(10): 1725-1733.
|
[28] |
Koch DD, Ali SF, Weikert MP, et al. Contribution of posterior corneal astigmatism to total corneal astigmatism [J]. J Cataract Refract Surg, 2012, 38(12): 2080-2087.
|
[29] |
Koch DD, Jenkins RB, Weikert MP, et al. Correcting astigmatism with toric intraocular lenses: Effect of posterior corneal astigmatism [J]. J Cataract Refract Surg, 2013, 39(12): 1803-1809.
|
[30] |
Caporossi A, Casprini F, Martone G, et al. Contrast Sensitivity Evaluation of Aspheric and Spherical Intraocular Lenses 2 Years After Implantation [J]. J Refrac Surg, 2009, 25(7): 578-590.
|
[31] |
Caporossi A, Martone G, Casprini F, et al. Prospective randomized study of clinical performance of 3 aspheric and 2 spherical intralocular lenses in 250 eyes [J]. J Cataract Refract Surg, 2007, 23(7): 639-648.
|
[32] |
Fernandez-Vega L, Madrid-Costa D, Alfonso JF, et al. Optical and visual performance of diffractive intraocular lens implantation after myopic laser in situ keratomileusis [J]. J Cataract Refract Surg, 2009, 35(5): 825-832.
|
[33] |
Lawu T, Mukai K, Matsushima H, et al. Effects of decentration and tilt on the optical performance of 6 aspheric intraocular lens designs in a model eye [J]. J Cataract Refract Surg, 2019, 45(5): 662-668.
|
[34] |
Alfonso JF, Fernandez-Vega L, Blazquez JI, et al. Visual function comparison of 2 aspheric multifocal intraocular lenses [J]. J Cataract Refract Surg, 2012, 38(2): 242-248.
|
[35] |
Altan-Yaycioglu R, Gozum N, Gucukoglu A. Pseudo-accommodation with intraocular lenses implanted in the bag [J]. J Refrac Surgery, 2002, 18(3): 271-275.
|
[36] |
Hu JQ, Sarkar R, Sella R, et al. Cost-effectiveness Analysis of Multifocal Intraocular Lenses Compared to Monofocal Intraocular Lenses in Cataract Surgery [J]. Am J Ophthalmol, 2019,208: 305-312.
|
[37] |
Cillino S, Casuccio A, Di Pace F, et al. One-year outcomes with new-generation multifocal intraocular lenses [J]. Ophthalmology, 2008, 115(9): 1508-1516.
|
[38] |
Alio JL, Plaza-Puche AB, Javaloy J, et al. Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL [J]. J Cataract Refract Surg, 2012, 28(2): 100-105.
|
[39] |
Chow SSW, Chan TCY, Ng ALK, et al. Outcomes of presbyopia-correcting intraocular lenses after laser in situ keratomileusis [J]. Int Ophthalmol, 2019, 39(5): 1199-1204.
|
[40] |
Alio JL, Pinero DP, Plaza-Puche AB, et al. Visual outcomes and optical performance of a monofocal intraocular lens and a new-generation multifocal intraocular lens [J]. J Cataract Refract Surg, 2011, 37(2): 241-250.
|
[41] |
Alio JL, Plaza-Puche AB, Pinero DP, et al. Comparative analysis of the clinical outcomes with 2 multifocal intraocular lens models with rotational asymmetry [J]. J Cataract Refract Surg, 2011, 37(9): 1605-1614.
|
[42] |
Savini G, Hoffer KJ, Lombardo M, et al. Influence of the effective lens position, as predicted by axial length and keratometry, on the near add power of multifocal intraocular lenses [J]. J Cataract Refract Surg, 2016, 42(1): 44-49.
|
[43] |
Kohnen T, Titke C, Bohm M. Trifocal intraocular lens implantation to treat visual demands in various distances following lens removal [J]. Am J Ophthalmol, 2016, 161: 71-77.
|
[44] |
Crema AS, Walsh A, Ventura BV, et al. Visual outcomes of eyes implanted with a toric multifocal intraocular lens[J]. J Cataract Refract Surg, 2014, 30(7): 486-491.
|
[45] |
Ferreira TB, Marques EF, Rodrigues A, et al. Visual and optical outcomes of a diffractive multifocal toric intraocular lens [J]. J Cataract Refract Surg, 2013, 39(7): 1029-1035.
|
[46] |
Akella SS, Juthani VV. Extended depth of focus intraocular lenses for presbyopia [J]. Curr Opin Ophthalmol, 2018, 29(4): 318-322.
|
[47] |
Gatinel D, Loicq J. Clinically relevant optical properties of bifocal, trifocal, and extended depth of focus intraocular lenses[J]. J Cataract Refract Surg, 2016, 32(4): 273-280.
|
[48] |
Gallego AA, Bara S, Jaroszewicz Z, et al. Visual Strehl performance of IOL designs with extended depth of focus [J]. Optom Vis Sci, 2012, 89(12): 1702-1707.
|
[49] |
Attia MSA, Auffarth GU, Kretz FTA, et al. Clinical Evaluation of an Extended Depth of Focus Intraocular Lens With the Salzburg Reading Desk [J]. J Cataract Refract Surg, 2017, 33(10): 664-669.
|
[50] |
Cochener B, Concerto Study G. Clinical outcomes of a new extended range of vision intraocular lens: International Multicenter Concerto Study [J]. J Cataract Refract Surg, 2016, 42(9): 1268-1275.
|
[51] |
Tan J, Qin Y, Wang C, et al. Visual quality and performance following bilateral implantation of TECNIS Symfony intraocular lenses with or without micro-monovision [J]. Clin Ophthalmol, 2019, 13: 1071-1077.
|
[52] |
Dhital A, Spalton DJ, Gala KB. Comparison of near vision, intraocular lens movement, and depth of focus with accommodating and monofocal intraocular lenses [J]. J Cataract Refract Surg, 2013, 39(12): 1872-1878.
|
[53] |
Beiko GHH. Comparison of visual results with accommodating intraocular lenses versus mini-monovision with a monofocal intraocular lens [J]. J Cataract Refract Surg, 2013, 39(1): 48-55.
|
[54] |
Alio JL, Plaza-Puche AB, Montalban R, et al. Visual outcomes with a single-optic accommodating intraocular lens and a low-addition-power rotational asymmetric multifocal intraocular lens [J]. J Cataract Refract Surg, 2012, 38(6): 978-985.
|
[55] |
Alio JL, Pinero DP, Plaza-Puche AB. Visual outcomes and optical performance with a monofocal intraocular lens and a new-generation single-optic accommodating intraocular lens [J]. J Cataract Refract Surg, 2010, 36(10): 1656-1664.
|
[56] |
Alio JL, Plaza-Puche AB, Montalban R, et al. Near visual outcomes with single-optic and dual-optic accommodating intraocular lenses [J]. J Cataract Refract Surg, 2012, 38(9): 1568-1575.
|
[57] |
Bohorquez V, Alarcon R. Long-term reading performance in patients with bilateral dual-optic accommodating intraocular lenses [J]. J Cataract Refract Surg, 2010, 36(11): 1880-1886.
|
[58] |
Ale J, Manns F, Ho A. Evaluation of the performance of accommodating IOLs using a paraxial optics analysis [J]. Ophthalmic Physiol Opt, 2010, 30(2): 132-142.
|
[59] |
Alio JL, Ben-Nun J, Rodriguez-Prats JL, et al. Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept [J]. J Cataract Refract Surg, 2009, 35(10): 1671-1678.
|
[60] |
van Kooten TG, Koopmans SA, Terwee T, et al. Long-term prevention of capsular opacification after lens-refilling surgery in a rabbit model [J]. Acta Ophthalmol, 2019, 97(6): e860-e870.
|
[61] |
Dogru M, Honda R, Omoto M, et al. Early visual results with the ICU accommodating intraocular lens [J]. J Cataract Refract Surg, 2005, 31(5): 895-902.
|
[62] |
Ale JB, Manns F, Ho A. Paraxial analysis of the depth of field of a pseudophakic eye with accommodating intraocular lens[J]. Optom Vis Sci, 2011, 88(7): 789-794.
|
[63] |
Doane JF, Jackson RT. Accommodative intraocular lenses: considerations on use, function and design [J]. Curr Opin Ophthalmol, 2007, 18(4): 318-324.
|
[64] |
Grzybowski A, Wasinska-Borowiec W, Alio JL, et al. Intraocular lenses in age-related macular degeneration [J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(9): 1687-1696.
|
[65] |
Agarwal A, Lipshitz I, Jacob S, et al. Mirror telescopic intraocular lens for age-related macular degeneration - Design and preliminary clinical results of the Lipshitz macular implant [J]. J Cataract Refract Surg, 2008, 34(1): 87-94.
|
[66] |
Alio JL, Mulet EM, Ruiz-Moreno JM, et al. Intraocular telescopic lens evaluation in patients with age-related macular degeneration [J]. J Cataract Refract Surg, 2004, 30(6): 1177-1189.
|
[67] |
Altpeter EK, Nguyen NX. Requirements for low vision magnification aids in age-related macular degeneration. Data from the Tubingen low vision clinic (comparison of 2007—2011 with 1999—2005) [J]. Ophthalmologe, 2015, 112(11): 923-928.
|
[68] |
Boyer D, Freund KB, Regillo C, et al. Long-term (60-month) results for the implantable miniature telescope: efficacy and safety outcomes stratified by age in patients with end-stage age-related macular degeneration [J]. Clin Ophthalmol, 2015, 9: 1099-1107.
|
[69] |
Hudson HL, Stulting RD, Heier JS, et al. Implantable telescope for end-stage age-related macular degeneration: long-term visual acuity and safety outcomes [J]. Am J Ophthalmol, 2008, 146(5): 664-673.
|
[70] |
Lane SS, Kuppermann BD, Fine IH, et al. A prospective multicenter clinical trial to evaluate the safety and effectiveness of the implantable miniature telescope [J]. Am J Ophthalmol, 2004, 137(6): 993-1001.
|
[71] |
Hudson HL, Lane SS, Heier JS, et al. Implantable miniature telescope for the treatment of visual acuity loss resulting from end-stage age-related macular degeneration: 1-year results [J]. Ophthalmology, 2006, 113(11): 1987-2001.
|
[72] |
Dick HB, Piovella M, Vukich J, et al. Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery [J]. J Cataract Refract Surg, 2017, 43(7): 956-968.
|
[73] |
Hengerer FH, Artal P, Kohnen T, et al. Initial clinical results of a new telescopic IOL implanted in patients with dry age-related macular degeneration [J]. J Cataract Refract Surg, 2015, 31(3): 158-162.
|
[74] |
Kaskaloglu M, Uretmen O, Yagci A. Medium-term results of implantable miniaturized telescopes in eyes with age-related macular degeneration [J]. J Cataract Refract Surg, 2001, 27(11): 1751-1755.
|
[75] |
Amzallag T, Pynson J. Lens biomaterials for cataract surgery [J]. J Fr Ophthamol, 2007, 30(7): 757-767.
|
[76] |
Kugelberg M, Wejde G, Jayaram H, et al. Posterior capsule opacification after implantation of a hydrophilic or a hydrophobic acrylic intraocular lens: one-year follow-up [J]. J Cataract Refract Surg, 2006, 32(10): 1627-1631.
|
[77] |
Kato K, Nishida M, Yamane H, et al. Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change [J]. J Cataract Refract Surg, 2001, 27(9): 1493-1498.
|
[78] |
Cheng JW, Wei RL, Cai JP, et al. Efficacy of different intraocular lens materials and optic edge designs in preventing posterior capsular opacification: a meta-analysis [J]. Am J Ophthalmol, 2007, 143(3): 428-436.
|
[79] |
Duman R, Karel F, Ozyol P, et al. Effect of four different intraocular lenses on posterior capsule opacification [J]. Int J Ophthalmol, 2015, 8(1): 118-121.
|
[80] |
Gauthier L, Lafuma A, Laurendeau C, et al. Neodymium:YAG laser rates after bilateral implantation of hydrophobic or hydrophilic multifocal intraocular lenses: twenty-four month retrospective comparative study [J]. J Cataract Refract Surg, 2010, 36(7): 1195-1200.
|
[81] |
Hayashi K, Hayashi H. Posterior capsule opacification after implantation of a hydrogel intraocular lens [J]. Br J Ophthalmol, 2004, 88(2): 182-185.
|
[82] |
Heatley CJ, Spalton DJ, Kumar A, et al. Comparison of posterior capsule opacification rates between hydrophilic and hydrophobic single-viece acrylic intraocular lenses [J]. J Cataract Refract Surg, 2005, 31(4): 718-724.
|
[83] |
Auffarth GU, Brezin A, Caporossi A, et al. Comparison of Nd : YAG capsulotomy rates following phacoemulsification with implantation of PMMA, silicone, or acrylic intra-ocular lenses in four European countries [J]. Ophthalmic Epidemiol, 2004, 11(4): 319-329.
|
[84] |
Cullin F, Busch T, Lundstrom M. Economic considerations related to choice of intraocular lens (IOL) and posterior capsule opacification frequency - a comparison of three different IOLs [J]. Acta Ophthalmologica, 2014, 92(2): 179-183.
|
[85] |
Kugelberg M, Wejde G, Jayaram H, et al. Two-year follow-up of posterior capsule opacification after implantation of a hydrophilic or hydrophobic acrylic intraocular lens [J]. Acta Ophthalmologica, 2008, 86(5): 533-536.
|
[86] |
Fong CSU, Mitchell P, Rochtchina E, et al. Three-year incidence and factors associated with posterior capsule opacification after cataract surgery: the Australian prospective cataract surgery and age-related macular degeneration study [J]. Am J Ophthalmol, 2014, 157(1): 171-179.
|
[87] |
Li N, Chen XM, Zhang JJ, et al. Effect of AcrySof versus silicone or polymethyl methacrylate intraocular lens on posterior capsule opacification [J]. Ophthalmology, 2008, 115(5): 830-838.
|
[88] |
Zemaitiene R, Jasinskas V. Prevention of posterior capsule opacification with 3 intraocular lens models: a prospective, randomized, long-term clinical trial [J]. Med Lith, 2011, 47(11): 595-599.
|
[89] |
Hayashi K, Hayashi H, Nakao F, et al. Reduction in the area of the anterior capsule opening after polymethylmethacrylate, silicone, and soft acrylic intraocular lens implantation [J]. Am J Ophthalmol, 1997, 123(4): 441-447.
|
[90] |
Hayashi K, Hayashi H. Intraocular lens factors that may affect anterior capsule contraction [J]. Ophthalmology, 2005, 112(2): 286-292.
|
[91] |
Qiu X, Wu Y, Jiang Y, et al. Management and microbiological characteristics of membrane formation on a hydrophilic acrylic intraocular lens: a clinical case series and material comparative study of different IOLs [J]. J Ophthalmol, 2019, 2019: 5746186-5746194.
|
[92] |
Dick HB, Olson RJ, Augustin AJ, et al. Vacuoles in the Acrysof (TM) intraocular lens as factor of the presence of serum in aqueous humor [J]. Ophthalmic Res, 2001, 33(2): 61-67.
|
[93] |
Dick HB, Krummenauer F, Schwenn O, et al. Objective and subjective evaluation of photic phenomena after monofocal and multifocal intraocular lens implantation [J]. Ophthalmology, 1999, 106(10): 1878-1886.
|
[94] |
Xi L, Liu Y, Zhao F, et al. Analysis of glistenings in hydrophobic acrylic intraocular lenses on visual performance [J]. Int J Ophthalmol, 2014, 7(3): 446-451.
|
[95] |
Chang A, Kugelberg M. Glistenings 9 years after phacoemulsification in hydrophobic and hydrophilic acrylic intraocular lenses [J]. J Cataract Refract Surg, 2015, 41(6): 1199-1204.
|
[96] |
Ronbeck M, Behndig A, Taube M, et al. Comparison of glistenings in intraocular lenses with three different materials: 12-year follow-up [J]. Acta Ophthalmologica, 2013, 91(1): 66-70.
|
[97] |
Christiansen G, Durcan FJ, Olson RJ, et al. Glistenings in the AcrySof intraocular lens: pilot study [J]. J Cataract Refract Surg, 2001, 27(5): 728-733.
|
[98] |
Monestam E, Behndig A. Impact on visual function from light scattering and glistenings in intraocular lenses, a long-term study [J]. Acta Ophthalmologica, 2011, 89(8): 724-728.
|
[99] |
Schweitzer C, Orignac I, Praud D, et al. Glistening in glaucomatous eyes: visual performances and risk factors [J]. Acta Ophthalmologica, 2014, 92(6): 529-534.
|
[100] |
Waite A, Faulkner N, Olson RJ. Glistenings in the single-piece, hydrophobic, acrylic intraocular lenses [J]. Am J Ophthalmol, 2007, 144(1): 143-144.
|
[101] |
Colin J, Orignac I. Glistenings on intraocular lenses in healthy eyes: effects and associations [J]. J Cataract Refract Surg, 2011, 27(12): 869-875.
|
[102] |
Dhaliwal DK, Mamalis N, Olson RJ, et al. Visual significance of glistenings seen in the AcrySof intraocular lens [J]. J Cataract Refract Surg, 1996, 22(4): 452-457.
|
[103] |
Henriksen BS, Kinard K, Olson RJ. Effect of intraocular lens glistening size on visual quality [J]. J Cataract Refract Surg, 2015, 41(6): 1190-1198.
|
[104] |
Stanojcic N, Hull C, O'Brart DP. Clinical and material degradations of intraocular lenses: A review [EB/OL]. [2019-07-26].
URL
|
[105] |
Johnson RN, Blankenship G. A prospective, randomized, clinical-trial of heparin-therapy for postoperative intraocular fibrin [J]. Ophthalmology, 1988, 95(3): 312-317.
|
[106] |
Ygge J, Wenzel M, Philipson B, et al. Cellular reactions on heparin surface-modified versus regular pmma lenses during the 1st postoperative month - a double-masked and randomized study using specular microphotography [J]. Ophthalmology, 1990, 97(9): 1216-1224.
|
[107] |
Basti S, Aasuri MK, Reddy MK, et al. Heparin-surface-modified intraocular lenses in pediatric cataract surgery: Prospective randomized study [J]. J Cataract Refract Surg, 1999, 25(6): 782-787.
|
[108] |
Dada T, Dada VK, Sharma N, et al. Primary posterior capsulorhexis with optic capture and intracameral heparin in paediatric cataract surgery [J]. Clin Exp Ophthalmol, 2000, 28(5): 361-363.
|
[109] |
Youssef PN, Sheibani N, Albert DM. Retinal light toxicity [J]. Eye, 2011, 25(1): 1-14.
|
[110] |
Brockmann C, Schulz M, Laube T. Transmittance characteristics of ultraviolet and blue-light-filtering intralocular lenses [J]. J Cataract Refract Surg, 2008, 34(7): 1161-1166.
|
[111] |
Clarke MP, Yap M, Weatherill JR. Do intraocular lenses with ultraviolet absorbing chromophores protect against macular edema [J]. Acta Ophthalmologica, 1989, 67(5): 593-596.
|
[112] |
Barisic A, Dekaris I, Gabric N, et al. Blue light filtering intraocular lenses in phacoemulsification cataract surgery [J]. Coll Anthropol, 2007, 31: 57-60.
|
[113] |
Kraff MC, Sanders DR, Jampol LM, et al. Effect of an ultraviolet-filtering intraocular-lens on cystoid macular edema [J]. Ophthalmology, 1985, 92(3): 366-369.
|
[114] |
Mainster MA. The spectra, classification, and rationale of ultraviolet-protective intraocular lenses [J]. Am J Ophthalmol, 1986, 102(6): 727-732.
|
[115] |
Alfonso JF, Fernandez-Vega L, Baamonde MB, et al. Prospective visual evaluation of apodized diffractive intraocular lenses [J]. J Cataract Refract Surg, 2007, 33(7): 1235-1243.
|
[116] |
Bhattacharjee H, Bhattacharjee K, Medhi J. Visual performance: Comparison of foldable intraocular lenses [J]. J Cataract Refract Surg, 2006, 32(3): 451-455.
|
[117] |
Cionni RJ, Tsai JH. Color perception with AcrySof Natural and AcrySof single-piece intraocular lenses under photopic and mesopic conditions [J]. J Cataract Refract Surg, 2006, 32(2): 236-242.
|
[118] |
Biber JM, Sandoval HP, Trivedi RH, et al. Comparison of the incidence and visual significance of posterior capsule opacification between multifocal spherical, monofocal spherical, and monofocal aspheric intraocular lenses [J]. J Cataract Refract Surg, 2009, 35(7): 1234-1238.
|
[119] |
Bandyopadhyay S, Saha M, Chakrabarti A, et al. Effect on contrast sensitivity after clear, yellow and orange intraocular lens implantation [J]. Int Ophthalmol, 2016, 36(3): 313-318.
|
[120] |
Davison JA, Patel AS, Cunha JP, et al. Recent studies provide an updated clinical perspective on blue light-filtering IOLs [J]. Graefes Arch Clin Exp Ophthalmol, 2011, 249(7): 957-968.
|
[121] |
Hayashi K, Hayashi H. Visual function in patients with yellow tinted intraocular lenses compared with vision in patients with non-tinted intraocular lenses [J]. Br J Ophthalmol, 2006, 90(8): 1019-1023.
|
[122] |
Hayashi K, Masumoto M, Hayashi H. All-distance visual acuity in eyes with a nontinted or a yellow-tinted diffractive multifocal intraocular lens [J]. Jpn J Ophthalmol, 2009, 53(2): 100-106.
|
[123] |
Kara N, Jardim JL, Leme ED, et al. Effect of the AcrySof Natural intraocular lens on blue-yellow perimetry [J]. J Cataract Refract Surg, 2006, 32(8): 1328-1330.
|
[124] |
Yuan ZX, Reinach P, Yuan JQ. Contrast sensitivity and color vision with a yellow intraocular len [J]. Am J Ophthalmol, 2004, 138(1): 138-140.
|
[125] |
Downes SM. Ultraviolet or blue-filtering intraocular lenses: what is the evidence? [J]. Eye, 2016, 30(2): 215-221.
|
[126] |
Espindle D, Crawford B, Maxwell A, et al. Quality-of-life improvements in cataract patients with bilateral blue light-filtering intraocular lenses: Clinical trial [J]. J Cataract Refract Surg, 2005, 31(10): 1952-1959.
|
[127] |
Downie LE, Busija L, Keller PR. Blue-light filtering intraocular lenses (IOLs) for protecting macular health [J]. The Cochrane database of systematic reviews, 2018(5): CD011977.
|
[128] |
Downie LE, Wormald R, Evans J, et al. Analysis of a Systematic Review About Blue Light-Filtering Intraocular Lenses for Retinal Protection: Understanding the Limitations of the Evidence [J]. JAMA Ophthalmol, 2019, 137(6): 694-697.
|
[129] |
Kara N, Espindola RF, Gomes BAF, et al. Effects of blue light-filtering intraocular lenses on the macula, contrast sensitivity, and color vision after a long-term follow-up [J]. J Cataract Refract Surg, 2011, 37(12): 2115-2119.
|
[130] |
Falkner-Radler CI, Benesch T, Binder S. Blue light-filter intraocular lenses in vitrectomy combined with cataract surgery: Results of a randomized controlled clinical trial [J]. Am J Ophthalmol, 2008, 145(3): 499-503.
|
[131] |
Wren SME, Spalton DJ, Jose R, et al. Factors that influence the development of posterior capsule opacification with a polyacrylic intraocular lens [J]. Am J Ophthalmol, 2005, 139(4): 691-695.
|
[132] |
Ram J, Apple DJ, Peng Q, et al. Update on fixation of rigid and foldable posterior chamber intraocular lenses. Part II - Choosing the correct haptic fixation and intraocular lens design to help eradicate posterior capsule opacification [J]. Ophthalmology, 1999, 106(5): 891-900.
|
[133] |
Lindholm JM, Laine I, Tuuminen R. Five-year cumulative incidence and risk factors of Nd:YAG capsulotomy in 10 044 hydrophobic acrylic 1-piece and 3-piece intraocular lenses[J]. Am J Ophthalmol, 2019, 200: 218-223.
|
[134] |
Wallin TR, Hinckley M, Nilson C, et al. A clinical comparison of single-piece and three-piece truncated hydrophobic acrylic intraocular lenses [J]. Am J Ophthalmol, 2003, 136(4): 614-619.
|
[135] |
Bender LE, Nimsgern C, Jose R, et al. Effect of 1-piece and 3-piece AcrySof intraocular lenses on the development of posterior capsule opacification after cataract surgery [J]. J Cataract Refract Surg, 2004, 30(4): 786-789.
|
[136] |
Zemaitiene R, Jasinskas V, Auffarth GU. Influence of three-piece and single-piece designs of two sharp-edge optic hydrophobic acrylic intraocular lenses on the prevention of posterior capsule opacification: a prospective, randomised, long-term clinical trial [J]. Br J Ophthalmol, 2007, 91(5): 644-648.
|
[137] |
Leydolt C, Davidovic S, Sacu S, et al. Long-term effect of 1-Piece and 3-piece hydrophobic acrylic Intraocular lens on posterior capsule opacification: a randomized trial [J]. Ophthalmology, 2007, 114(9): 1663-1669.
|
[138] |
Savini G, Barboni P, Ducoli P, et al. Influence of intraocular lens haptic design on refractive error [J]. J Cataract Refract Surg, 2014, 40(9): 1473-1478.
|
[139] |
Dewey S. Posterior capsule opacification [J]. Curr Opin Ophthalmol, 2006, 17(1): 45-53.
|
[140] |
Patel CK, Ormonde S, Rosen PH, et al. Postoperative intraocular lens rotation: a randomized comparison of plate and loop haptic implants [J]. Ophthalmology, 1999, 106(11): 2190-2195.
|
[141] |
Prinz A, Neumayer T, Buehl W, et al. Rotational stability and posterior capsule opacification of a plate-haptic and an open-loop-haptic intraocular lens [J]. J Cataract Refract Surg, 2011, 37(2): 251-257.
|
[142] |
Gonvers M, Sickenberg M, Vanmelle G. Change in capsulorhexis size after implantation of three types of intraocular lenses [J]. J Cataract Refract Surg, 1997, 23(2): 231-238.
|
[143] |
Kahraman G, Amon M, Ferdinaro C, et al. Intraindividual comparative analysis of capsule opacification after implantation of 2 single-piece hydrophobic acrylic intraocular lenses models: Three-year follow-up [J]. J Cataract Refract Surg, 2015, 41(5): 990-996.
|
[144] |
Erie JC, Simpson MJ, Bandhauer MH. Influence of the intraocular lens optic-haptic junction on illumination of the peripheral retina and negative dysphotopsia [J]. J Cataract Refract Surg, 2019, 45(9): 1335-1339
|
[145] |
Linnola RJ. Sandwich theory: Bioactivity-based explanation for posterior capsule opacification [J]. J Cataract Refract Surg, 1997, 23(10): 1539-1542.
|
[146] |
Auffarth GU, Golescu A, Becker KA, et al. Quantification of posterior capsule opacification with round and sharp edge intraocular lenses [J]. Ophthalmology, 2003, 110(4): 772-780.
|
[147] |
Kohnen T, Fabian E, Gerl R, et al. Optic edge design as longterm factor for posterior capsular opacification rates [J]. Ophthalmology, 2008, 115(8): 1308-1314.
|
[148] |
Findl O, Buehl W, Bauer P, et al. Interventions for preventing posterior capsule opacification [J]. Cochrane Database Syst Rev, 2010, 2: 83.
|
[149] |
Chang A, Behndig A, Ronbeck M, et al. Comparison of posterior capsule opacification and glistenings with 2 hydrophobic acrylic intraocular lenses: 5-to 7-year follow-up [J]. J Cataract Refract Surg, 2013, 39(5): 694-698.
|
[150] |
Perez-Vives C. Biomaterial influence on intraocular lens performance: an overview [J]. J Ophthalmol, 2018, 2018: 2687385-2687401.
|
[151] |
Hancox J, Spalton D, Cleary G, et al. Fellow-eye comparison of posterior capsule opacification with AcrySof SN60AT and AF-1 YA-60BB blue-blocking intraocular lenses [J]. J Cataract Refract Surg, 2008, 34(9): 1489-1494.
|
[152] |
Nanavaty MA, Zukaite I, Salvage J. Edge profile of commercially available square-edged intraocular lenses: Part 2 [J]. J Cataract Refract Surg, 2019, 45(6): 847-853.
|