切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (05) : 257 -266. doi: 10.3877/cma.j.issn.2095-2007.2019.05.001

述评

把握白内障手术的发展趋势与精准运用人工晶状体各种类型的特点
张旻1, 蒋永祥1,()   
  1. 1. 200031 上海,复旦大学附属眼耳鼻喉科医院眼科 国家卫生健康委员会近视眼重点实验室(复旦大学) 中国医学科学院近视眼重点实验室和上海市视觉损伤与重建实验室
  • 收稿日期:2019-08-28 出版日期:2019-10-28
  • 通信作者: 蒋永祥
  • 基金资助:
    近视眼重点实验室专项基金项目(JSY2019-02); 上海市科学技术委员会科技创新行动计划项目(18411965200)

Grasp the development trend of cataract surgery and the characteristics of precise use of intraocular lenses

Min Zhang1, Yongxiang Jiang1,()   

  1. 1. Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, China
  • Received:2019-08-28 Published:2019-10-28
  • Corresponding author: Yongxiang Jiang
引用本文:

张旻, 蒋永祥. 把握白内障手术的发展趋势与精准运用人工晶状体各种类型的特点[J]. 中华眼科医学杂志(电子版), 2019, 09(05): 257-266.

Min Zhang, Yongxiang Jiang. Grasp the development trend of cataract surgery and the characteristics of precise use of intraocular lenses[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(05): 257-266.

白内障手术在部分地区已由单纯的复明手术转变为屈光手术,"低散光、低球差、无老花"、提高脱镜率、改善术后视觉质量已经成为眼科医师和白内障患者共同的目标。了解不同IOL的生物学和光学特点,是眼科医师为患者挑选合适的IOL类型、设计恰当的IOL屈光度的前提,是实现对白内障患者精准治疗需要解决的重要问题。一般对IOL的分类主要基于其光学区的功能设计,植入非球面IOL改善高阶像差已经成为普遍做法,临床上也越来越多的开始采用Toric IOL、MIOL和双焦或多焦联合Toric设计的IOL和EDOFIOL等功能性IOL。其他分类标准还有IOL材质、IOL形状设计(包括光学区、襻和IOL整体)等,肝素处理、防蓝光处理的选择越来越多,各型号IOL材质和外形设计也各有优势。考虑到我国各地区白内障手术定位不同,对IOL功能和形态上选择还有很大差异。本文旨在根据不同分类,对现有不同类型的IOL进行归纳和总结,方便临床医师在临床工作中针对不同患者情况选择合适类型的IOL。

Cataract surgery has transformed form vision rehabilitation surgery into refractive surgery. Both ophthalmologists and cataract patients would like to achieve the goal of " lower astigmatism, lower spherical aberration, less presbyopia" , more spectacle-independence and higher post-operative visual quality. The first step for ophthalmologists to choose appropriate type and refractive power of intraocular lenses (IOLs) is to know more about the biochemical and optical properties of IOLs. It is also the important lesson to learn for the precision medication of cataract patients. In general, the IOLs are classified by the design of their optical functions. It is quite common in clinical practices to have aspheric IOLs in correction of high-order aberrations. More and more toric IOLs, multifocus IOLs with or without toric design and extended depth of focus (EDOF) IOLs, these high-level functional IOLs. Others include classifications according to IOL material, IOL shape design (including optical area, haptics and the integrity) and so on. Heparin surface-modified and blue light-filting IOLs are more and more popular. Different types of IOLs have their own advantages. Considering the different stages of cataract surgery development around the country, varied preferences in IOL function and design do exist. This paper aims to make summaries on IOLs for the convenience of ophthalmologists in choosing appropriate IOLs for cataract patients in different clinical conditions.

[1]
Bourne RRA, Stevens GA, White RA, et al. Causes of vision loss worldwide, 1990 to 2010: a systematic analysis [J]. Lancet Glob Health, 2013, 1(6): E339-E349.
[2]
Resnikoff S, Pascolini D, Etya'ale D, et al. Global data on visual impairment in the year 2002 [J]. Bull World Health Organ, 2004, 82(11): 844-851.
[3]
Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990 to 2020: a systematic review and meta-analysis [J]. Lancet Glob Health, 2017, 5(12): E1221-E1234.
[4]
Bourne RRA, Jonas JB, Flaxman SR, et al. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990 to 2010 [J]. Br J Ophthalmol, 2014, 98(5): 629-638.
[5]
Congdon N, Vingerling JR, Klein BEK, et al. Prevalence of cataract and pseudophakia/aphakia among adults in the United States [J]. Arch Ophthalmol, 2004, 122(4): 487-494.
[6]
Tang YT, Wang XF, Wang JC, et al. Prevalence of age-related cataract and cataract surgery in a chinese adult population: The Taizhou Eye Study [J]. Invest Ophth Vis Sci, 2016, 57(3): 1193-1200.
[7]
Lin HT, Ouyang H, Zhu J, et al. Lens regeneration using endogenous stem cells with gain of visual function [J]. Nature, 2016, 531(7594): 323-328.
[8]
Smith PW, Wong SK, Stark WJ, et al. Complications of semiflexible, closed-loop anterior-chamber intraocular lenses [J]. Arch Ophthalmol, 1987, 105(1): 52-57.
[9]
Yuan XY, Song H, Peng G, et al. Prevalence of corneal astigmatism in patients before cataract surgery in Northern China [J]. J Ophthalmol, 2014, 7.
[10]
LI S, JIE Y. Cataract surgery and lens implantation [J]. Curr Opin Ophthalmol, 2019, 30(1): 39-43.
[11]
He WW, Zhu XJ, Du Y, et al. Clinical efficacy of implantation of toric intraocular lenses with different incision positions: a comparative study of steep-axis incision and non-steep-axis incision [J]. BMC Ophthalmol, 2017, 17(6).
[12]
Khokhar S, Lohiya P, Murugiesan V, et al. Corneal astigmatism correction with opposite clear corneal incisions or single clear corneal incision: Comparative analysis [J]. J Cataract Refract Surg, 2006, 32(9): 1432-1437.
[13]
Panagiotopoulou EK, Ntonti P, Gkika M, et al. Image-guided lens extraction surgery: a systematic review [J]. Int J Ophthalmol, 2019, 12(1): 135-151.
[14]
Allard K, Zetterberg M. Toric IOL implantation in a patient with keratoconus and previous penetrating keratoplasty: a case report and review of literature [J]. BMC Ophthalmol, 2018, 18(1): 215.
[15]
Felipe A, Artigas JM, Diez-Ajenjo A, et al. Residual astigmatism produced by toric intraocular lens rotation [J]. J Cataract Refract Surg, 2011, 37(10): 1895-1901.
[16]
Hura AS, Osher RH. Comparing the Zeiss Callisto Eye and the Alcon Verion Image Guided System Toric Lens Alignment Technologies [J]. J Cataract Refract Surg, 2017, 33(7): 482-487.
[17]
de Oca IM, Kim EJ, Wang L, et al. Accuracy of toric intraocular lens axis alignment using a 3-dimensional computer-guided visualization system [J]. J Cataract Refract Surg, 2016, 42(4): 550-555.
[18]
Elhofi AH, Helaly HA. Comparison between digital and manual marking for toric intraocular lenses: a randomized trial[J]. Medicine(Baltimore), 2015, 94(38): e1618.
[19]
Kim EC, Hwang KY, Lim SA, et al. Accuracy of toric intraocular lens implantation using automated vs manual marking [J]. BMC Ophthalmol, 2019, 19(1): 169.
[20]
Velasco-Barona C, Cervantes-Coste G, Mendoza-Schuster E, et al. Comparison of biometric measurements obtained by the Verion Image-Guided System versus the auto-refracto-keratometer [J]. Int Ophthalmol, 2018, 38(3): 951-957.
[21]
Ruiz-Belda C, Rodrigo F, Pinero DP. alidation of keratometric measurements obtained with an intraoperative image-guided system: intra-session repeatability and interchangeability with an optical biometer [J]. Clin Exp Optom, 2018, 101(2): 200-205.
[22]
Eom Y, Kang SY, Song JS, et al. Effect of effective lens position on cylinder power of toric intraocular lenses [J]. Can J Ophthalmol, 2015, 50(1): 26-32.
[23]
中华医学会眼科学分会白内障与人工晶状体学组. 我国散光矫正型人工晶状体临床应用专家共识(2017年)[J]. 中华眼科杂志201753(1): 7-10.
[24]
Thibos LN, Bradley A, Zhang XX. Effect of ocular chromatic aberration on monocular visual performance [J]. Optom Vis Sci, 1991, 68(8): 599-607.
[25]
Zhang M, Qian D, Jing Q, et al. Analysis of corneal spherical aberrations in cataract patients with high myopia [J]. Sci Rep, 2019, 9(1): 1420.
[26]
Zhang M, Jing Q, Chen J, et al. Analysis of corneal higher-order aberrations in cataract patients with high myopia [J]. J Cataract Refract Surg, 2018, 44(12): 1482-1490.
[27]
Yamaguchi T, Negishi K, Ono T, et al. Feasibility of spherical aberration correction with aspheric intraocular lenses in cataract surgery based on individual pupil diameter [J]. J Cataract Refract Surg, 2009, 35(10): 1725-1733.
[28]
Koch DD, Ali SF, Weikert MP, et al. Contribution of posterior corneal astigmatism to total corneal astigmatism [J]. J Cataract Refract Surg, 2012, 38(12): 2080-2087.
[29]
Koch DD, Jenkins RB, Weikert MP, et al. Correcting astigmatism with toric intraocular lenses: Effect of posterior corneal astigmatism [J]. J Cataract Refract Surg, 2013, 39(12): 1803-1809.
[30]
Caporossi A, Casprini F, Martone G, et al. Contrast Sensitivity Evaluation of Aspheric and Spherical Intraocular Lenses 2 Years After Implantation [J]. J Refrac Surg, 2009, 25(7): 578-590.
[31]
Caporossi A, Martone G, Casprini F, et al. Prospective randomized study of clinical performance of 3 aspheric and 2 spherical intralocular lenses in 250 eyes [J]. J Cataract Refract Surg, 2007, 23(7): 639-648.
[32]
Fernandez-Vega L, Madrid-Costa D, Alfonso JF, et al. Optical and visual performance of diffractive intraocular lens implantation after myopic laser in situ keratomileusis [J]. J Cataract Refract Surg, 2009, 35(5): 825-832.
[33]
Lawu T, Mukai K, Matsushima H, et al. Effects of decentration and tilt on the optical performance of 6 aspheric intraocular lens designs in a model eye [J]. J Cataract Refract Surg, 2019, 45(5): 662-668.
[34]
Alfonso JF, Fernandez-Vega L, Blazquez JI, et al. Visual function comparison of 2 aspheric multifocal intraocular lenses [J]. J Cataract Refract Surg, 2012, 38(2): 242-248.
[35]
Altan-Yaycioglu R, Gozum N, Gucukoglu A. Pseudo-accommodation with intraocular lenses implanted in the bag [J]. J Refrac Surgery, 2002, 18(3): 271-275.
[36]
Hu JQ, Sarkar R, Sella R, et al. Cost-effectiveness Analysis of Multifocal Intraocular Lenses Compared to Monofocal Intraocular Lenses in Cataract Surgery [J]. Am J Ophthalmol, 2019208: 305-312.
[37]
Cillino S, Casuccio A, Di Pace F, et al. One-year outcomes with new-generation multifocal intraocular lenses [J]. Ophthalmology, 2008, 115(9): 1508-1516.
[38]
Alio JL, Plaza-Puche AB, Javaloy J, et al. Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL [J]. J Cataract Refract Surg, 2012, 28(2): 100-105.
[39]
Chow SSW, Chan TCY, Ng ALK, et al. Outcomes of presbyopia-correcting intraocular lenses after laser in situ keratomileusis [J]. Int Ophthalmol, 2019, 39(5): 1199-1204.
[40]
Alio JL, Pinero DP, Plaza-Puche AB, et al. Visual outcomes and optical performance of a monofocal intraocular lens and a new-generation multifocal intraocular lens [J]. J Cataract Refract Surg, 2011, 37(2): 241-250.
[41]
Alio JL, Plaza-Puche AB, Pinero DP, et al. Comparative analysis of the clinical outcomes with 2 multifocal intraocular lens models with rotational asymmetry [J]. J Cataract Refract Surg, 2011, 37(9): 1605-1614.
[42]
Savini G, Hoffer KJ, Lombardo M, et al. Influence of the effective lens position, as predicted by axial length and keratometry, on the near add power of multifocal intraocular lenses [J]. J Cataract Refract Surg, 2016, 42(1): 44-49.
[43]
Kohnen T, Titke C, Bohm M. Trifocal intraocular lens implantation to treat visual demands in various distances following lens removal [J]. Am J Ophthalmol, 2016, 161: 71-77.
[44]
Crema AS, Walsh A, Ventura BV, et al. Visual outcomes of eyes implanted with a toric multifocal intraocular lens[J]. J Cataract Refract Surg, 2014, 30(7): 486-491.
[45]
Ferreira TB, Marques EF, Rodrigues A, et al. Visual and optical outcomes of a diffractive multifocal toric intraocular lens [J]. J Cataract Refract Surg, 2013, 39(7): 1029-1035.
[46]
Akella SS, Juthani VV. Extended depth of focus intraocular lenses for presbyopia [J]. Curr Opin Ophthalmol, 2018, 29(4): 318-322.
[47]
Gatinel D, Loicq J. Clinically relevant optical properties of bifocal, trifocal, and extended depth of focus intraocular lenses[J]. J Cataract Refract Surg, 2016, 32(4): 273-280.
[48]
Gallego AA, Bara S, Jaroszewicz Z, et al. Visual Strehl performance of IOL designs with extended depth of focus [J]. Optom Vis Sci, 2012, 89(12): 1702-1707.
[49]
Attia MSA, Auffarth GU, Kretz FTA, et al. Clinical Evaluation of an Extended Depth of Focus Intraocular Lens With the Salzburg Reading Desk [J]. J Cataract Refract Surg, 2017, 33(10): 664-669.
[50]
Cochener B, Concerto Study G. Clinical outcomes of a new extended range of vision intraocular lens: International Multicenter Concerto Study [J]. J Cataract Refract Surg, 2016, 42(9): 1268-1275.
[51]
Tan J, Qin Y, Wang C, et al. Visual quality and performance following bilateral implantation of TECNIS Symfony intraocular lenses with or without micro-monovision [J]. Clin Ophthalmol, 2019, 13: 1071-1077.
[52]
Dhital A, Spalton DJ, Gala KB. Comparison of near vision, intraocular lens movement, and depth of focus with accommodating and monofocal intraocular lenses [J]. J Cataract Refract Surg, 2013, 39(12): 1872-1878.
[53]
Beiko GHH. Comparison of visual results with accommodating intraocular lenses versus mini-monovision with a monofocal intraocular lens [J]. J Cataract Refract Surg, 2013, 39(1): 48-55.
[54]
Alio JL, Plaza-Puche AB, Montalban R, et al. Visual outcomes with a single-optic accommodating intraocular lens and a low-addition-power rotational asymmetric multifocal intraocular lens [J]. J Cataract Refract Surg, 2012, 38(6): 978-985.
[55]
Alio JL, Pinero DP, Plaza-Puche AB. Visual outcomes and optical performance with a monofocal intraocular lens and a new-generation single-optic accommodating intraocular lens [J]. J Cataract Refract Surg, 2010, 36(10): 1656-1664.
[56]
Alio JL, Plaza-Puche AB, Montalban R, et al. Near visual outcomes with single-optic and dual-optic accommodating intraocular lenses [J]. J Cataract Refract Surg, 2012, 38(9): 1568-1575.
[57]
Bohorquez V, Alarcon R. Long-term reading performance in patients with bilateral dual-optic accommodating intraocular lenses [J]. J Cataract Refract Surg, 2010, 36(11): 1880-1886.
[58]
Ale J, Manns F, Ho A. Evaluation of the performance of accommodating IOLs using a paraxial optics analysis [J]. Ophthalmic Physiol Opt, 2010, 30(2): 132-142.
[59]
Alio JL, Ben-Nun J, Rodriguez-Prats JL, et al. Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept [J]. J Cataract Refract Surg, 2009, 35(10): 1671-1678.
[60]
van Kooten TG, Koopmans SA, Terwee T, et al. Long-term prevention of capsular opacification after lens-refilling surgery in a rabbit model [J]. Acta Ophthalmol, 2019, 97(6): e860-e870.
[61]
Dogru M, Honda R, Omoto M, et al. Early visual results with the ICU accommodating intraocular lens [J]. J Cataract Refract Surg, 2005, 31(5): 895-902.
[62]
Ale JB, Manns F, Ho A. Paraxial analysis of the depth of field of a pseudophakic eye with accommodating intraocular lens[J]. Optom Vis Sci, 2011, 88(7): 789-794.
[63]
Doane JF, Jackson RT. Accommodative intraocular lenses: considerations on use, function and design [J]. Curr Opin Ophthalmol, 2007, 18(4): 318-324.
[64]
Grzybowski A, Wasinska-Borowiec W, Alio JL, et al. Intraocular lenses in age-related macular degeneration [J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(9): 1687-1696.
[65]
Agarwal A, Lipshitz I, Jacob S, et al. Mirror telescopic intraocular lens for age-related macular degeneration - Design and preliminary clinical results of the Lipshitz macular implant [J]. J Cataract Refract Surg, 2008, 34(1): 87-94.
[66]
Alio JL, Mulet EM, Ruiz-Moreno JM, et al. Intraocular telescopic lens evaluation in patients with age-related macular degeneration [J]. J Cataract Refract Surg, 2004, 30(6): 1177-1189.
[67]
Altpeter EK, Nguyen NX. Requirements for low vision magnification aids in age-related macular degeneration. Data from the Tubingen low vision clinic (comparison of 2007—2011 with 1999—2005) [J]. Ophthalmologe, 2015, 112(11): 923-928.
[68]
Boyer D, Freund KB, Regillo C, et al. Long-term (60-month) results for the implantable miniature telescope: efficacy and safety outcomes stratified by age in patients with end-stage age-related macular degeneration [J]. Clin Ophthalmol, 2015, 9: 1099-1107.
[69]
Hudson HL, Stulting RD, Heier JS, et al. Implantable telescope for end-stage age-related macular degeneration: long-term visual acuity and safety outcomes [J]. Am J Ophthalmol, 2008, 146(5): 664-673.
[70]
Lane SS, Kuppermann BD, Fine IH, et al. A prospective multicenter clinical trial to evaluate the safety and effectiveness of the implantable miniature telescope [J]. Am J Ophthalmol, 2004, 137(6): 993-1001.
[71]
Hudson HL, Lane SS, Heier JS, et al. Implantable miniature telescope for the treatment of visual acuity loss resulting from end-stage age-related macular degeneration: 1-year results [J]. Ophthalmology, 2006, 113(11): 1987-2001.
[72]
Dick HB, Piovella M, Vukich J, et al. Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery [J]. J Cataract Refract Surg, 2017, 43(7): 956-968.
[73]
Hengerer FH, Artal P, Kohnen T, et al. Initial clinical results of a new telescopic IOL implanted in patients with dry age-related macular degeneration [J]. J Cataract Refract Surg, 2015, 31(3): 158-162.
[74]
Kaskaloglu M, Uretmen O, Yagci A. Medium-term results of implantable miniaturized telescopes in eyes with age-related macular degeneration [J]. J Cataract Refract Surg, 2001, 27(11): 1751-1755.
[75]
Amzallag T, Pynson J. Lens biomaterials for cataract surgery [J]. J Fr Ophthamol, 2007, 30(7): 757-767.
[76]
Kugelberg M, Wejde G, Jayaram H, et al. Posterior capsule opacification after implantation of a hydrophilic or a hydrophobic acrylic intraocular lens: one-year follow-up [J]. J Cataract Refract Surg, 2006, 32(10): 1627-1631.
[77]
Kato K, Nishida M, Yamane H, et al. Glistening formation in an AcrySof lens initiated by spinodal decomposition of the polymer network by temperature change [J]. J Cataract Refract Surg, 2001, 27(9): 1493-1498.
[78]
Cheng JW, Wei RL, Cai JP, et al. Efficacy of different intraocular lens materials and optic edge designs in preventing posterior capsular opacification: a meta-analysis [J]. Am J Ophthalmol, 2007, 143(3): 428-436.
[79]
Duman R, Karel F, Ozyol P, et al. Effect of four different intraocular lenses on posterior capsule opacification [J]. Int J Ophthalmol, 2015, 8(1): 118-121.
[80]
Gauthier L, Lafuma A, Laurendeau C, et al. Neodymium:YAG laser rates after bilateral implantation of hydrophobic or hydrophilic multifocal intraocular lenses: twenty-four month retrospective comparative study [J]. J Cataract Refract Surg, 2010, 36(7): 1195-1200.
[81]
Hayashi K, Hayashi H. Posterior capsule opacification after implantation of a hydrogel intraocular lens [J]. Br J Ophthalmol, 2004, 88(2): 182-185.
[82]
Heatley CJ, Spalton DJ, Kumar A, et al. Comparison of posterior capsule opacification rates between hydrophilic and hydrophobic single-viece acrylic intraocular lenses [J]. J Cataract Refract Surg, 2005, 31(4): 718-724.
[83]
Auffarth GU, Brezin A, Caporossi A, et al. Comparison of Nd : YAG capsulotomy rates following phacoemulsification with implantation of PMMA, silicone, or acrylic intra-ocular lenses in four European countries [J]. Ophthalmic Epidemiol, 2004, 11(4): 319-329.
[84]
Cullin F, Busch T, Lundstrom M. Economic considerations related to choice of intraocular lens (IOL) and posterior capsule opacification frequency - a comparison of three different IOLs [J]. Acta Ophthalmologica, 2014, 92(2): 179-183.
[85]
Kugelberg M, Wejde G, Jayaram H, et al. Two-year follow-up of posterior capsule opacification after implantation of a hydrophilic or hydrophobic acrylic intraocular lens [J]. Acta Ophthalmologica, 2008, 86(5): 533-536.
[86]
Fong CSU, Mitchell P, Rochtchina E, et al. Three-year incidence and factors associated with posterior capsule opacification after cataract surgery: the Australian prospective cataract surgery and age-related macular degeneration study [J]. Am J Ophthalmol, 2014, 157(1): 171-179.
[87]
Li N, Chen XM, Zhang JJ, et al. Effect of AcrySof versus silicone or polymethyl methacrylate intraocular lens on posterior capsule opacification [J]. Ophthalmology, 2008, 115(5): 830-838.
[88]
Zemaitiene R, Jasinskas V. Prevention of posterior capsule opacification with 3 intraocular lens models: a prospective, randomized, long-term clinical trial [J]. Med Lith, 2011, 47(11): 595-599.
[89]
Hayashi K, Hayashi H, Nakao F, et al. Reduction in the area of the anterior capsule opening after polymethylmethacrylate, silicone, and soft acrylic intraocular lens implantation [J]. Am J Ophthalmol, 1997, 123(4): 441-447.
[90]
Hayashi K, Hayashi H. Intraocular lens factors that may affect anterior capsule contraction [J]. Ophthalmology, 2005, 112(2): 286-292.
[91]
Qiu X, Wu Y, Jiang Y, et al. Management and microbiological characteristics of membrane formation on a hydrophilic acrylic intraocular lens: a clinical case series and material comparative study of different IOLs [J]. J Ophthalmol, 2019, 2019: 5746186-5746194.
[92]
Dick HB, Olson RJ, Augustin AJ, et al. Vacuoles in the Acrysof (TM) intraocular lens as factor of the presence of serum in aqueous humor [J]. Ophthalmic Res, 2001, 33(2): 61-67.
[93]
Dick HB, Krummenauer F, Schwenn O, et al. Objective and subjective evaluation of photic phenomena after monofocal and multifocal intraocular lens implantation [J]. Ophthalmology, 1999, 106(10): 1878-1886.
[94]
Xi L, Liu Y, Zhao F, et al. Analysis of glistenings in hydrophobic acrylic intraocular lenses on visual performance [J]. Int J Ophthalmol, 2014, 7(3): 446-451.
[95]
Chang A, Kugelberg M. Glistenings 9 years after phacoemulsification in hydrophobic and hydrophilic acrylic intraocular lenses [J]. J Cataract Refract Surg, 2015, 41(6): 1199-1204.
[96]
Ronbeck M, Behndig A, Taube M, et al. Comparison of glistenings in intraocular lenses with three different materials: 12-year follow-up [J]. Acta Ophthalmologica, 2013, 91(1): 66-70.
[97]
Christiansen G, Durcan FJ, Olson RJ, et al. Glistenings in the AcrySof intraocular lens: pilot study [J]. J Cataract Refract Surg, 2001, 27(5): 728-733.
[98]
Monestam E, Behndig A. Impact on visual function from light scattering and glistenings in intraocular lenses, a long-term study [J]. Acta Ophthalmologica, 2011, 89(8): 724-728.
[99]
Schweitzer C, Orignac I, Praud D, et al. Glistening in glaucomatous eyes: visual performances and risk factors [J]. Acta Ophthalmologica, 2014, 92(6): 529-534.
[100]
Waite A, Faulkner N, Olson RJ. Glistenings in the single-piece, hydrophobic, acrylic intraocular lenses [J]. Am J Ophthalmol, 2007, 144(1): 143-144.
[101]
Colin J, Orignac I. Glistenings on intraocular lenses in healthy eyes: effects and associations [J]. J Cataract Refract Surg, 2011, 27(12): 869-875.
[102]
Dhaliwal DK, Mamalis N, Olson RJ, et al. Visual significance of glistenings seen in the AcrySof intraocular lens [J]. J Cataract Refract Surg, 1996, 22(4): 452-457.
[103]
Henriksen BS, Kinard K, Olson RJ. Effect of intraocular lens glistening size on visual quality [J]. J Cataract Refract Surg, 2015, 41(6): 1190-1198.
[104]
Stanojcic N, Hull C, O'Brart DP. Clinical and material degradations of intraocular lenses: A review [EB/OL]. [2019-07-26].

URL    
[105]
Johnson RN, Blankenship G. A prospective, randomized, clinical-trial of heparin-therapy for postoperative intraocular fibrin [J]. Ophthalmology, 1988, 95(3): 312-317.
[106]
Ygge J, Wenzel M, Philipson B, et al. Cellular reactions on heparin surface-modified versus regular pmma lenses during the 1st postoperative month - a double-masked and randomized study using specular microphotography [J]. Ophthalmology, 1990, 97(9): 1216-1224.
[107]
Basti S, Aasuri MK, Reddy MK, et al. Heparin-surface-modified intraocular lenses in pediatric cataract surgery: Prospective randomized study [J]. J Cataract Refract Surg, 1999, 25(6): 782-787.
[108]
Dada T, Dada VK, Sharma N, et al. Primary posterior capsulorhexis with optic capture and intracameral heparin in paediatric cataract surgery [J]. Clin Exp Ophthalmol, 2000, 28(5): 361-363.
[109]
Youssef PN, Sheibani N, Albert DM. Retinal light toxicity [J]. Eye, 2011, 25(1): 1-14.
[110]
Brockmann C, Schulz M, Laube T. Transmittance characteristics of ultraviolet and blue-light-filtering intralocular lenses [J]. J Cataract Refract Surg, 2008, 34(7): 1161-1166.
[111]
Clarke MP, Yap M, Weatherill JR. Do intraocular lenses with ultraviolet absorbing chromophores protect against macular edema [J]. Acta Ophthalmologica, 1989, 67(5): 593-596.
[112]
Barisic A, Dekaris I, Gabric N, et al. Blue light filtering intraocular lenses in phacoemulsification cataract surgery [J]. Coll Anthropol, 2007, 31: 57-60.
[113]
Kraff MC, Sanders DR, Jampol LM, et al. Effect of an ultraviolet-filtering intraocular-lens on cystoid macular edema [J]. Ophthalmology, 1985, 92(3): 366-369.
[114]
Mainster MA. The spectra, classification, and rationale of ultraviolet-protective intraocular lenses [J]. Am J Ophthalmol, 1986, 102(6): 727-732.
[115]
Alfonso JF, Fernandez-Vega L, Baamonde MB, et al. Prospective visual evaluation of apodized diffractive intraocular lenses [J]. J Cataract Refract Surg, 2007, 33(7): 1235-1243.
[116]
Bhattacharjee H, Bhattacharjee K, Medhi J. Visual performance: Comparison of foldable intraocular lenses [J]. J Cataract Refract Surg, 2006, 32(3): 451-455.
[117]
Cionni RJ, Tsai JH. Color perception with AcrySof Natural and AcrySof single-piece intraocular lenses under photopic and mesopic conditions [J]. J Cataract Refract Surg, 2006, 32(2): 236-242.
[118]
Biber JM, Sandoval HP, Trivedi RH, et al. Comparison of the incidence and visual significance of posterior capsule opacification between multifocal spherical, monofocal spherical, and monofocal aspheric intraocular lenses [J]. J Cataract Refract Surg, 2009, 35(7): 1234-1238.
[119]
Bandyopadhyay S, Saha M, Chakrabarti A, et al. Effect on contrast sensitivity after clear, yellow and orange intraocular lens implantation [J]. Int Ophthalmol, 2016, 36(3): 313-318.
[120]
Davison JA, Patel AS, Cunha JP, et al. Recent studies provide an updated clinical perspective on blue light-filtering IOLs [J]. Graefes Arch Clin Exp Ophthalmol, 2011, 249(7): 957-968.
[121]
Hayashi K, Hayashi H. Visual function in patients with yellow tinted intraocular lenses compared with vision in patients with non-tinted intraocular lenses [J]. Br J Ophthalmol, 2006, 90(8): 1019-1023.
[122]
Hayashi K, Masumoto M, Hayashi H. All-distance visual acuity in eyes with a nontinted or a yellow-tinted diffractive multifocal intraocular lens [J]. Jpn J Ophthalmol, 2009, 53(2): 100-106.
[123]
Kara N, Jardim JL, Leme ED, et al. Effect of the AcrySof Natural intraocular lens on blue-yellow perimetry [J]. J Cataract Refract Surg, 2006, 32(8): 1328-1330.
[124]
Yuan ZX, Reinach P, Yuan JQ. Contrast sensitivity and color vision with a yellow intraocular len [J]. Am J Ophthalmol, 2004, 138(1): 138-140.
[125]
Downes SM. Ultraviolet or blue-filtering intraocular lenses: what is the evidence? [J]. Eye, 2016, 30(2): 215-221.
[126]
Espindle D, Crawford B, Maxwell A, et al. Quality-of-life improvements in cataract patients with bilateral blue light-filtering intraocular lenses: Clinical trial [J]. J Cataract Refract Surg, 2005, 31(10): 1952-1959.
[127]
Downie LE, Busija L, Keller PR. Blue-light filtering intraocular lenses (IOLs) for protecting macular health [J]. The Cochrane database of systematic reviews, 2018(5): CD011977.
[128]
Downie LE, Wormald R, Evans J, et al. Analysis of a Systematic Review About Blue Light-Filtering Intraocular Lenses for Retinal Protection: Understanding the Limitations of the Evidence [J]. JAMA Ophthalmol, 2019, 137(6): 694-697.
[129]
Kara N, Espindola RF, Gomes BAF, et al. Effects of blue light-filtering intraocular lenses on the macula, contrast sensitivity, and color vision after a long-term follow-up [J]. J Cataract Refract Surg, 2011, 37(12): 2115-2119.
[130]
Falkner-Radler CI, Benesch T, Binder S. Blue light-filter intraocular lenses in vitrectomy combined with cataract surgery: Results of a randomized controlled clinical trial [J]. Am J Ophthalmol, 2008, 145(3): 499-503.
[131]
Wren SME, Spalton DJ, Jose R, et al. Factors that influence the development of posterior capsule opacification with a polyacrylic intraocular lens [J]. Am J Ophthalmol, 2005, 139(4): 691-695.
[132]
Ram J, Apple DJ, Peng Q, et al. Update on fixation of rigid and foldable posterior chamber intraocular lenses. Part II - Choosing the correct haptic fixation and intraocular lens design to help eradicate posterior capsule opacification [J]. Ophthalmology, 1999, 106(5): 891-900.
[133]
Lindholm JM, Laine I, Tuuminen R. Five-year cumulative incidence and risk factors of Nd:YAG capsulotomy in 10 044 hydrophobic acrylic 1-piece and 3-piece intraocular lenses[J]. Am J Ophthalmol, 2019, 200: 218-223.
[134]
Wallin TR, Hinckley M, Nilson C, et al. A clinical comparison of single-piece and three-piece truncated hydrophobic acrylic intraocular lenses [J]. Am J Ophthalmol, 2003, 136(4): 614-619.
[135]
Bender LE, Nimsgern C, Jose R, et al. Effect of 1-piece and 3-piece AcrySof intraocular lenses on the development of posterior capsule opacification after cataract surgery [J]. J Cataract Refract Surg, 2004, 30(4): 786-789.
[136]
Zemaitiene R, Jasinskas V, Auffarth GU. Influence of three-piece and single-piece designs of two sharp-edge optic hydrophobic acrylic intraocular lenses on the prevention of posterior capsule opacification: a prospective, randomised, long-term clinical trial [J]. Br J Ophthalmol, 2007, 91(5): 644-648.
[137]
Leydolt C, Davidovic S, Sacu S, et al. Long-term effect of 1-Piece and 3-piece hydrophobic acrylic Intraocular lens on posterior capsule opacification: a randomized trial [J]. Ophthalmology, 2007, 114(9): 1663-1669.
[138]
Savini G, Barboni P, Ducoli P, et al. Influence of intraocular lens haptic design on refractive error [J]. J Cataract Refract Surg, 2014, 40(9): 1473-1478.
[139]
Dewey S. Posterior capsule opacification [J]. Curr Opin Ophthalmol, 2006, 17(1): 45-53.
[140]
Patel CK, Ormonde S, Rosen PH, et al. Postoperative intraocular lens rotation: a randomized comparison of plate and loop haptic implants [J]. Ophthalmology, 1999, 106(11): 2190-2195.
[141]
Prinz A, Neumayer T, Buehl W, et al. Rotational stability and posterior capsule opacification of a plate-haptic and an open-loop-haptic intraocular lens [J]. J Cataract Refract Surg, 2011, 37(2): 251-257.
[142]
Gonvers M, Sickenberg M, Vanmelle G. Change in capsulorhexis size after implantation of three types of intraocular lenses [J]. J Cataract Refract Surg, 1997, 23(2): 231-238.
[143]
Kahraman G, Amon M, Ferdinaro C, et al. Intraindividual comparative analysis of capsule opacification after implantation of 2 single-piece hydrophobic acrylic intraocular lenses models: Three-year follow-up [J]. J Cataract Refract Surg, 2015, 41(5): 990-996.
[144]
Erie JC, Simpson MJ, Bandhauer MH. Influence of the intraocular lens optic-haptic junction on illumination of the peripheral retina and negative dysphotopsia [J]. J Cataract Refract Surg, 2019, 45(9): 1335-1339
[145]
Linnola RJ. Sandwich theory: Bioactivity-based explanation for posterior capsule opacification [J]. J Cataract Refract Surg, 1997, 23(10): 1539-1542.
[146]
Auffarth GU, Golescu A, Becker KA, et al. Quantification of posterior capsule opacification with round and sharp edge intraocular lenses [J]. Ophthalmology, 2003, 110(4): 772-780.
[147]
Kohnen T, Fabian E, Gerl R, et al. Optic edge design as longterm factor for posterior capsular opacification rates [J]. Ophthalmology, 2008, 115(8): 1308-1314.
[148]
Findl O, Buehl W, Bauer P, et al. Interventions for preventing posterior capsule opacification [J]. Cochrane Database Syst Rev, 2010, 2: 83.
[149]
Chang A, Behndig A, Ronbeck M, et al. Comparison of posterior capsule opacification and glistenings with 2 hydrophobic acrylic intraocular lenses: 5-to 7-year follow-up [J]. J Cataract Refract Surg, 2013, 39(5): 694-698.
[150]
Perez-Vives C. Biomaterial influence on intraocular lens performance: an overview [J]. J Ophthalmol, 2018, 2018: 2687385-2687401.
[151]
Hancox J, Spalton D, Cleary G, et al. Fellow-eye comparison of posterior capsule opacification with AcrySof SN60AT and AF-1 YA-60BB blue-blocking intraocular lenses [J]. J Cataract Refract Surg, 2008, 34(9): 1489-1494.
[152]
Nanavaty MA, Zukaite I, Salvage J. Edge profile of commercially available square-edged intraocular lenses: Part 2 [J]. J Cataract Refract Surg, 2019, 45(6): 847-853.
[1] 黄泽, 张梓榆, 杨青宇, 赖声清, 李海燕. 乳腺腔镜手术临床应用现状及训练路径[J]. 中华乳腺病杂志(电子版), 2023, 17(02): 122-125.
[2] 李振霞, 郑小雯, 纪芳, 夏伦果, 陈荣敬, 游清玲, 房兵. 基于Bloom目标分类理论的翻转课堂模式在口腔本科正畸教学中的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 133-139.
[3] 付曾强, 罗洪, 彭晶晶. 老年乳腺浸润性导管癌超声特征及其与分子分型相关性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 258-261.
[4] 庞兴华, 苑著. 针吸细胞块技术在术前乳腺癌分子分型中的应用研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 276-279.
[5] 叶啟发. 生物人工肝血液净化材料研究现状[J]. 中华移植杂志(电子版), 2023, 17(02): 0-.
[6] 张燕珍, 王锡携, 文小兰. 血清巨噬细胞迁移抑制因子对活动性肺结核分诊检测的意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 200-202.
[7] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[8] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[9] 孙秀丽, 刘振宇, 唐婷婷, 张景尚, 李猛, 毛迎燕, 万修华. 关注后发性白内障的发病机制及防控措施[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 193-198.
[10] 陈灏楠, 肖伟. 透明角膜切口对白内障术后角膜散光的影响及其精准测量的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 172-176.
[11] 肖庆, 王诚, 周焜, 魏宜功. 脑-机接口的技术原理及临床应用[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 241-245.
[12] 吴绍伟. 迷走神经电刺激术治疗神经系统疾病的应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 180-184.
[13] 王金丹, 谢叙一, 张雷磊, 李佳慧, 朱心洁, 何超翔. 程序性死亡受体1分子抗体制备及应用的虚拟仿真实验建设思路与应用[J]. 中华临床实验室管理电子杂志, 2023, 11(03): 181-185,191.
[14] 中华医学会消化内镜学分会. 消化内镜超级微创手术创面预处理与抗生素应用专家共识(2023年,北京)[J]. 中华胃肠内镜电子杂志, 2023, 10(02): 83-91.
[15] 彭丽, 于娜, 吴雪莲. 老年白内障患者超声乳化术后眼部疼痛原因分析[J]. 中华老年病研究电子杂志, 2023, 10(02): 49-51.
阅读次数
全文


摘要