切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2018, Vol. 08 ›› Issue (05) : 235 -240. doi: 10.3877/cma.j.issn.2095-2007.2018.05.007

所属专题: 文献

综述

浅谈在糖尿病性视网膜病变中调节血管内皮生长因子产生的信号通路
何薇1,(), 黄棋2, 余曦3, 吕红彬4   
  1. 1. 611130 四川省成都市温江区人民医院眼科
    2. 610016 四川省成都市第一人民医院眼科
    3. 646100 四川省泸州市第二人民医院眼耳鼻喉科
    4. 646000 四川省泸州医学院附属医院眼科
  • 收稿日期:2018-11-08 出版日期:2018-10-28
  • 通信作者: 何薇
  • 基金资助:
    四川省科技支撑计划项目(2015SZ0086)

Exploring the signal pathway regulating vascular endothelial growth factor production in diabetic retinopathy

Wei He1,(), Qi Huang2, Xi Yu3, Hongbin Lv4   

  1. 1. Department of Ophthalmology, Wenjiang District People's Hospital of Sichuan Chengdu, Chengdu 611130, China
    2. Department of Ophthalmology, The First People's Hospital of Sichuan Chengdu, Chengdu 610016, China
    3. Department of Otolaryngology, The Second People's Hospital of Sichuan Luzhou, Luzhou 646100, China
    4. Department of Ophthalmology, Affiliated Hospital of Luzhou Medical College, Luzhou 646000, China
  • Received:2018-11-08 Published:2018-10-28
  • Corresponding author: Wei He
  • About author:
    Corresponding author: He Wei, Email:
引用本文:

何薇, 黄棋, 余曦, 吕红彬. 浅谈在糖尿病性视网膜病变中调节血管内皮生长因子产生的信号通路[J]. 中华眼科医学杂志(电子版), 2018, 08(05): 235-240.

Wei He, Qi Huang, Xi Yu, Hongbin Lv. Exploring the signal pathway regulating vascular endothelial growth factor production in diabetic retinopathy[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2018, 08(05): 235-240.

糖尿病性视网膜病变(DR)作为糖尿病(DM)在眼部最严重的微血管并发症,已成为全球工作年龄人群首位的致盲性眼病。血管内皮生长因子(VEGF)已被证实在DR新生血管的形成中起着重要作用,VEGF的表达增加可导致新生血管形成、血管内皮细胞通透性增加、促凋亡蛋白抑制作用减弱以及各种其它炎症介质的激活等病理改变的发生。因此,探索各种调节VEGF产生的信号通路有助于更深层次的了解这些病理改变发展的关系。本文中笔者就DR中各种调节VEGF产生的信号通路以及其与DR的相关性进行综述。

Diabetic retinopathy (DR), as the most serious microvascular complication of diabetes mellitus (DM) in the eye, has become the leading cause of blindness in working-age adults worldwide. Vascular endothelial growth factor (VEGF) has been shown to play an important role in the formation of neovascularization in DR. Increased expression of VEGF leads to pathological changes such as neovascularization, increased vascular endothelial cell permeability, decreased pro-apoptotic protein inhibition, and various other inflammatory mediators were activated. Therefore, exploring various signaling pathways that regulate VEGF production contributes to a deeper understanding of the relationship between these pathological changes. This article reviews the various signaling pathways in DR that regulate VEGF production and their association with DR.

[1]
Wang CC, Reusch JE. Diabetes and cardiovascular disease: changing the focus from glycemic control to improving long-term survival[J]. The American Journal of Cardiology, 2012, 110(9) : 58B-68B.
[2]
Sorrentino FS, Allkabes M, Salsini G, et al. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy[J]. Life sciences, 2016, 162 : 54-59.
[3]
Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy[J]. Experimental Diabesity Research. 2007, 2007 (3) : 43603.
[4]
Tang J, Kern TS. Inflammation in diabetic retinopathy[J]. Progress in retinal and eye research, 2011, 30(5) : 343-358.
[5]
Penn JS, Madan A, Caldwell RB, et al. Vascular endothelial growth factor in eye disease[J]. Progress in retinal and eye research, 2008, 27(4) : 331-371.
[6]
Rask-Madsen C, King GL. Kidney complications: factors that protect the diabetic vasculature[J]. Nature medicine, 2010, 16 (1) : 40-41.
[7]
陈娟, 吕红彬. 抗VEGF药物在糖尿病性视网膜病变治疗中的应用[J]. 眼科新进展,2014,34(4):397-400.
[8]
李峰, 隋桂琴, 车松天,等. 从糖尿病性视网膜病变发病机制看抗VEGF药物作用[J]. 中国实用眼科杂志,2011,29(1):18-20.
[9]
Senger DR. Vascular endothelial growth factor: much more than an angiogenesis factor[J]. Molecular biology of the cell, 2010, 21(3) : 377-379.
[10]
Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies[J]. Genes & cancer, 2011, 2(12) : 1097-1105.
[11]
李春深, 常柏, 苗戎,等. 抵挡汤早期干预对糖尿病大鼠视网膜VEGF和PKC基因表达的影响[J]. 北京中医药大学学报,2012,35(8):543-548.
[12]
张伟丽, 惠汝太. VEGF及其受体在动脉粥样硬化中的作用[J]. 中国分子心脏病学杂志,2005,5(3):568-573.
[13]
郑志. 活性氧在糖尿病性视网膜病变中作用机制及干预研究[D]. 上海:上海交通大学,2007:15,46-47.
[14]
Behl T, Kotwani A. Exploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathy[J]. Pharmacological research, 2015, 99:137-148.
[15]
贾薇, 袁中华. 动脉粥样硬化中的4个PKC相关酶[J]. 中国病理生理杂志. 2007,23(7):1442-1445.
[16]
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism[J]. Diabetes, 2005, 54(6) : 1615-1625.
[17]
Van Campenhout A, Van Campenhout C, Lagrou AR, et al. Impact of diabetes mellitus on the relationships between iron-,inflammatory- and oxidative stress status[J]. Diabetes/metabolism research and reviews, 2006, 22(6) : 444-454.
[18]
Behl T, Kaur I, Goel H. Implications of the endogenous PPAR-gamma ligand, 15-deoxy-delta-12, 14-prostaglandin J2, in diabetic retinopathy[J]. Life sciences, 2016, 153 : 93-99.
[19]
Poljsak B, Šuput D. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants[J]. Oxidative medicine and cellular longevity, 2013, 2013 : 956792.
[20]
Sharma P, Jha AB, Dubey RS, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions[J]. Bot. 2012, 2012 : 217037.
[21]
Osborne NN, Casson RJ, Wood JPM, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies[J]. Progress in Retinal & Eye Research, 2004, 23(1) : 91-147.
[22]
Augustin AJ, Keller A, Koch F, et al. Dick B. Effect of retinal coagulation status on oxidative metabolite and VEGF in 208 patients with proliferative diabetic retinopathy[J]. Klinische Monatsblätter für Augenheilkunde. 2001, 218(2) : 89-94.
[23]
Madsen-Bouterse SA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives[J]. Reviews in endocrine & metabolic disorders, 2008, 9(4) : 315-327.
[24]
Osborne NN, Casson RJ, Wood JPM, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies[J]. Progress in Retinal & Eye Research, 2004, 23(1) : 91-147.
[25]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001, 414(6865) : 813-820.
[26]
El-Remessy AB, Bartoli M, Platt DH, et al. Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration[J]. Journal of cell science, 2016, 129(16) : 3203.
[27]
严鸣光, 殷卫兵, 解传奇. VEGF、IL-6表达水平在糖尿病性视网膜病变患者中的差异性分析[J]. 中国实验诊断学,2017,21(12):2119-2122.
[28]
Frombaum M, Therond P, Djelidi R, et al. Piceatannol is more effective than resveratrol in restoring endothelial cell dimethylarginine dimethylaminohydrolase expression and activity after high-glucose oxidative stress[J]. Free radical research, 2011, 45(3) : 293-302.
[29]
Paneni F, Beckman JA, Creager MA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I[J]. European heart journal, 2013, 34(31) : 2436-2443.
[30]
Pereira ER, Frudd K, Awad W. Endoplasmic reticulum (ER) stress and hypoxia response pathways interact to potentiate hypoxia-inducible factor 1 (HIF-1) transcriptional activity on targets like vascular endothelial growth factor (VEGF)[J]. The Journal of biological chemistry, 2014, 289(6) : 3352-3364.
[31]
Min JH, Yang H, Ivan M, et al. Structure of an HIF-1alpha-pVHL complex: hydroxyproline recognition in signaling[J]. Science, 2002, 296(5574) : 1886-1889.
[32]
Pawlus MR, Wang L. STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells[J]. Oncogene, 2014, 33(13) : 1670-1679.
[33]
Boyer DS, Hopkins JJ, Sorof J, et al. Anti-Vascular Endothelial Growth Factor Therapy in Diabetic Macular Edema: Does Flavor Matter?[J]. JAMA ophthalmology, 2018, 136(3) : 269-270.
[34]
Eguchi M, Masuda H. Endothelial progenitor cells for postnatal vasculogenesis[J]. Clinical and experimental nephrology, 2007, 11(1) : 18-25.
[35]
Tepper OM, Galiano RD, Capla JM, et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures[J]. Circulation, 2002, 106(22) : 2781-2786.
[36]
Liu X, Li Y, Liu Y, et al. Endothelial progenitor cells (EPCs) mobilized and activated by neurotrophic factors may contribute to pathologic neovascularization in diabetic retinopathy[J]. The American journal of pathology, 2010, 176(1) : 504-515.
[37]
Yang L, Guan H, He J, et al. VEGF increases the proliferative capacity and eNOS/NO levels of endothelial progenitor cells through the calcineurin/NFAT signalling pathway[J]. Cell biology international, 2012, 36(1) : 21-27.
[38]
Schulz RA. Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development[J]. Developmental biology, 2004, 266(1) : 1-16.
[39]
Napoli C, Paolisso G, Casamassimi A, et al. Effects of nitric oxide on cell proliferation: novel insights[J]. Journal of the American College of Cardiology, 2013, 62(2) : 89-95.
[40]
李贞, 施彩虹, 倪卫杰. 基质金属蛋白酶抑制剂GM6001对鼠视网膜新生血管和VEGF表达的作用[J]. 上海交通大学学报(医学版),2008,28(6):665-668.
[41]
Verma RP. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs [J].Bioorganic & medicinal chemistry, 2007, 15(6) : 2223-2268.
[42]
Kowluru RA, Zhong Q. Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9[J]. Expert opinion on investigational drugs, 2012, 21(6) : 797-805.
[43]
Marumo T, Schini-Kerth VB. Vascular endothelial growth factor activates nuclear factor-kappaB and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells[J]. Diabetes, 1999, 48(5) : 1131-1137.
[44]
Kim I, Moon SO, Kim SH, et al. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells[J]. The Journal of biological chemistry, 2001, 276(10) : 7614-7620.
[45]
Noda K, Nakao S, Ishida S. Leukocyte adhesion molecules in diabetic retinopathy[J]. Journal of ophthalmology, 2012, 2012 : 279037.
[46]
Yoshida S, Yoshida A, Ishibashi T, et al. Role of MCP-1 and MIP-1alpha in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization[J]. Journal of leukocyte biology, 2003, 73(1) : 137-144.
[47]
Sennlaub F, Valamanesh F, Vazquez-Tello A, et al. Cyclooxygenase-2 in human and experiemntal ischemic proliferative retinopathy[J]. Circulation, 2003, 108(2) : 198-204.
[48]
Zhang W, Liu H, Rojas M, et al. Anti-inflammatory therapy for diabetic retinopathy[J]. Immunotherapy, 2011, 3(5) : 609-628.
[49]
Ziemssen F, Lemmen K, Bertram B, et al. National guidelines for treatment of diabetic retinopathy: Second edition of the national guidelines for treatment of diabetic retinopathy[J]. Ophthalmologe, 2016, 113(7) : 623-638.
[50]
Park YG. New Diagnostic and Therapeutic Approaches for Preventing the Progression of Diabetic Retinopathy[J]. Journal of diabetes research, 2016, 2016 : 1753584.
[51]
Tost F, Kempin R, Grossjohann R. Diabetic retinopathy--Current aspects of therapy[J]. Medizinische Monatsschrift fuür Pharmazeuten, 2016, 39(4) : 148-156.
[52]
Nicholson BP. A review of clinical trials of anti-VEGF agents for diabetic retinopathy[J]. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fu?r klinische und experimentelle Ophthalmologie, 2010, 248(7) : 915-930.
[53]
Salam A, Mathew R. Treatment of proliferative diabetic retinopathy with anti-VEGF agents[J]. Acta ophthalmologica, 2011, 89(5) : 405-411.
[1] 王博, 白子锐, 李坚. 近红外二区新型血管内皮生长因子受体靶向探针在结直肠癌小鼠模型中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(03): 173-177.
[2] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[3] 刘先勇. 胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 183-188.
[4] 范博洋, 王宁, 张骞, 王贵玉. 结直肠癌转移调控的环状RNA分子机制研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 426-430.
[5] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[6] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[7] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[8] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[9] 王蕾, 姜岱山, 朱保锋, 贾寒雨, 沈君华, 张毅. 基于GEO数据库的热射病神经损伤相关基因的生物信息学分析[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 76-84.
[10] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[11] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[12] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[13] 吴晓翔, 杨波, 李景漩, 张凤玲, 郭桂辉, 郑少培. 脐动脉超声检查联合NLR、sFlt-1/PLGF对妊娠高血压综合征患者不良妊娠结局的预测价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 266-271.
[14] 何敏, 黄桢. 加减知柏地黄丸对特发性中枢性性早熟小鼠骨细胞骨形成蛋白-Smads信号通路的影响[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 214-220.
[15] 颜凡辉, 赵明俐, 李颖, 郭方明, 詹景冬, 赵英杰, 王阳, 张艳芬, 赵笑梅. 急性冠脉综合征患者冠脉血管病变程度与血清TNF-α、VEGF水平相关性研究[J]. 中华诊断学电子杂志, 2023, 11(03): 158-164.
阅读次数
全文


摘要