[1] |
Wang CC, Reusch JE. Diabetes and cardiovascular disease: changing the focus from glycemic control to improving long-term survival[J]. The American Journal of Cardiology, 2012, 110(9) : 58B-68B.
|
[2] |
Sorrentino FS, Allkabes M, Salsini G, et al. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy[J]. Life sciences, 2016, 162 : 54-59.
|
[3] |
Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy[J]. Experimental Diabesity Research. 2007, 2007 (3) : 43603.
|
[4] |
Tang J, Kern TS. Inflammation in diabetic retinopathy[J]. Progress in retinal and eye research, 2011, 30(5) : 343-358.
|
[5] |
Penn JS, Madan A, Caldwell RB, et al. Vascular endothelial growth factor in eye disease[J]. Progress in retinal and eye research, 2008, 27(4) : 331-371.
|
[6] |
Rask-Madsen C, King GL. Kidney complications: factors that protect the diabetic vasculature[J]. Nature medicine, 2010, 16 (1) : 40-41.
|
[7] |
陈娟, 吕红彬. 抗VEGF药物在糖尿病性视网膜病变治疗中的应用[J]. 眼科新进展,2014,34(4):397-400.
|
[8] |
李峰, 隋桂琴, 车松天,等. 从糖尿病性视网膜病变发病机制看抗VEGF药物作用[J]. 中国实用眼科杂志,2011,29(1):18-20.
|
[9] |
Senger DR. Vascular endothelial growth factor: much more than an angiogenesis factor[J]. Molecular biology of the cell, 2010, 21(3) : 377-379.
|
[10] |
Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies[J]. Genes & cancer, 2011, 2(12) : 1097-1105.
|
[11] |
李春深, 常柏, 苗戎,等. 抵挡汤早期干预对糖尿病大鼠视网膜VEGF和PKC基因表达的影响[J]. 北京中医药大学学报,2012,35(8):543-548.
|
[12] |
张伟丽, 惠汝太. VEGF及其受体在动脉粥样硬化中的作用[J]. 中国分子心脏病学杂志,2005,5(3):568-573.
|
[13] |
郑志. 活性氧在糖尿病性视网膜病变中作用机制及干预研究[D]. 上海:上海交通大学,2007:15,46-47.
|
[14] |
Behl T, Kotwani A. Exploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathy[J]. Pharmacological research, 2015, 99:137-148.
|
[15] |
贾薇, 袁中华. 动脉粥样硬化中的4个PKC相关酶[J]. 中国病理生理杂志. 2007,23(7):1442-1445.
|
[16] |
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism[J]. Diabetes, 2005, 54(6) : 1615-1625.
|
[17] |
Van Campenhout A, Van Campenhout C, Lagrou AR, et al. Impact of diabetes mellitus on the relationships between iron-,inflammatory- and oxidative stress status[J]. Diabetes/metabolism research and reviews, 2006, 22(6) : 444-454.
|
[18] |
Behl T, Kaur I, Goel H. Implications of the endogenous PPAR-gamma ligand, 15-deoxy-delta-12, 14-prostaglandin J2, in diabetic retinopathy[J]. Life sciences, 2016, 153 : 93-99.
|
[19] |
Poljsak B, Šuput D. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants[J]. Oxidative medicine and cellular longevity, 2013, 2013 : 956792.
|
[20] |
Sharma P, Jha AB, Dubey RS, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions[J]. Bot. 2012, 2012 : 217037.
|
[21] |
Osborne NN, Casson RJ, Wood JPM, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies[J]. Progress in Retinal & Eye Research, 2004, 23(1) : 91-147.
|
[22] |
Augustin AJ, Keller A, Koch F, et al. Dick B. Effect of retinal coagulation status on oxidative metabolite and VEGF in 208 patients with proliferative diabetic retinopathy[J]. Klinische Monatsblätter für Augenheilkunde. 2001, 218(2) : 89-94.
|
[23] |
Madsen-Bouterse SA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives[J]. Reviews in endocrine & metabolic disorders, 2008, 9(4) : 315-327.
|
[24] |
Osborne NN, Casson RJ, Wood JPM, et al. Retinal ischemia: mechanisms of damage and potential therapeutic strategies[J]. Progress in Retinal & Eye Research, 2004, 23(1) : 91-147.
|
[25] |
Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001, 414(6865) : 813-820.
|
[26] |
El-Remessy AB, Bartoli M, Platt DH, et al. Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration[J]. Journal of cell science, 2016, 129(16) : 3203.
|
[27] |
严鸣光, 殷卫兵, 解传奇. VEGF、IL-6表达水平在糖尿病性视网膜病变患者中的差异性分析[J]. 中国实验诊断学,2017,21(12):2119-2122.
|
[28] |
Frombaum M, Therond P, Djelidi R, et al. Piceatannol is more effective than resveratrol in restoring endothelial cell dimethylarginine dimethylaminohydrolase expression and activity after high-glucose oxidative stress[J]. Free radical research, 2011, 45(3) : 293-302.
|
[29] |
Paneni F, Beckman JA, Creager MA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I[J]. European heart journal, 2013, 34(31) : 2436-2443.
|
[30] |
Pereira ER, Frudd K, Awad W. Endoplasmic reticulum (ER) stress and hypoxia response pathways interact to potentiate hypoxia-inducible factor 1 (HIF-1) transcriptional activity on targets like vascular endothelial growth factor (VEGF)[J]. The Journal of biological chemistry, 2014, 289(6) : 3352-3364.
|
[31] |
Min JH, Yang H, Ivan M, et al. Structure of an HIF-1alpha-pVHL complex: hydroxyproline recognition in signaling[J]. Science, 2002, 296(5574) : 1886-1889.
|
[32] |
Pawlus MR, Wang L. STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells[J]. Oncogene, 2014, 33(13) : 1670-1679.
|
[33] |
Boyer DS, Hopkins JJ, Sorof J, et al. Anti-Vascular Endothelial Growth Factor Therapy in Diabetic Macular Edema: Does Flavor Matter?[J]. JAMA ophthalmology, 2018, 136(3) : 269-270.
|
[34] |
Eguchi M, Masuda H. Endothelial progenitor cells for postnatal vasculogenesis[J]. Clinical and experimental nephrology, 2007, 11(1) : 18-25.
|
[35] |
Tepper OM, Galiano RD, Capla JM, et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures[J]. Circulation, 2002, 106(22) : 2781-2786.
|
[36] |
Liu X, Li Y, Liu Y, et al. Endothelial progenitor cells (EPCs) mobilized and activated by neurotrophic factors may contribute to pathologic neovascularization in diabetic retinopathy[J]. The American journal of pathology, 2010, 176(1) : 504-515.
|
[37] |
Yang L, Guan H, He J, et al. VEGF increases the proliferative capacity and eNOS/NO levels of endothelial progenitor cells through the calcineurin/NFAT signalling pathway[J]. Cell biology international, 2012, 36(1) : 21-27.
|
[38] |
Schulz RA. Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development[J]. Developmental biology, 2004, 266(1) : 1-16.
|
[39] |
Napoli C, Paolisso G, Casamassimi A, et al. Effects of nitric oxide on cell proliferation: novel insights[J]. Journal of the American College of Cardiology, 2013, 62(2) : 89-95.
|
[40] |
李贞, 施彩虹, 倪卫杰. 基质金属蛋白酶抑制剂GM6001对鼠视网膜新生血管和VEGF表达的作用[J]. 上海交通大学学报(医学版),2008,28(6):665-668.
|
[41] |
Verma RP. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs [J].Bioorganic & medicinal chemistry, 2007, 15(6) : 2223-2268.
|
[42] |
Kowluru RA, Zhong Q. Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9[J]. Expert opinion on investigational drugs, 2012, 21(6) : 797-805.
|
[43] |
Marumo T, Schini-Kerth VB. Vascular endothelial growth factor activates nuclear factor-kappaB and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells[J]. Diabetes, 1999, 48(5) : 1131-1137.
|
[44] |
Kim I, Moon SO, Kim SH, et al. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells[J]. The Journal of biological chemistry, 2001, 276(10) : 7614-7620.
|
[45] |
Noda K, Nakao S, Ishida S. Leukocyte adhesion molecules in diabetic retinopathy[J]. Journal of ophthalmology, 2012, 2012 : 279037.
|
[46] |
Yoshida S, Yoshida A, Ishibashi T, et al. Role of MCP-1 and MIP-1alpha in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization[J]. Journal of leukocyte biology, 2003, 73(1) : 137-144.
|
[47] |
Sennlaub F, Valamanesh F, Vazquez-Tello A, et al. Cyclooxygenase-2 in human and experiemntal ischemic proliferative retinopathy[J]. Circulation, 2003, 108(2) : 198-204.
|
[48] |
Zhang W, Liu H, Rojas M, et al. Anti-inflammatory therapy for diabetic retinopathy[J]. Immunotherapy, 2011, 3(5) : 609-628.
|
[49] |
Ziemssen F, Lemmen K, Bertram B, et al. National guidelines for treatment of diabetic retinopathy: Second edition of the national guidelines for treatment of diabetic retinopathy[J]. Ophthalmologe, 2016, 113(7) : 623-638.
|
[50] |
Park YG. New Diagnostic and Therapeutic Approaches for Preventing the Progression of Diabetic Retinopathy[J]. Journal of diabetes research, 2016, 2016 : 1753584.
|
[51] |
Tost F, Kempin R, Grossjohann R. Diabetic retinopathy--Current aspects of therapy[J]. Medizinische Monatsschrift fuür Pharmazeuten, 2016, 39(4) : 148-156.
|
[52] |
Nicholson BP. A review of clinical trials of anti-VEGF agents for diabetic retinopathy[J]. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fu?r klinische und experimentelle Ophthalmologie, 2010, 248(7) : 915-930.
|
[53] |
Salam A, Mathew R. Treatment of proliferative diabetic retinopathy with anti-VEGF agents[J]. Acta ophthalmologica, 2011, 89(5) : 405-411.
|