[1] |
Huxlin KR, Goodchild AK. Retinal ganglion cells in the albino rat: revised morphological classification[J]. J Comp Neurol, 1997, 385(2): 309-323.
|
[2] |
Rockhill RL, Daly FJ, MacNeil MA, et al. The diversity of ganglion cells in a mammalian retina[J]. J Neurosci, 2002, 22(9): 3831-3843.
|
[3] |
Sun W, Li N, He S. Large-scale morophological survey of rat retinal ganglion cells[J]. Vis Neurosci, 2002, 19(4): 483-493.
|
[4] |
Baden T, Berens P, Franke K, et al. The functional diversity of retinal ganglion cells in the mouse[J]. Nature, 2016, 529(7586): 345-350.
|
[5] |
Barlow CF. Clinical Aspects of the Blood-Brain Barrier[J]. Annual Review of Medicine, 1976, 2(6028): 133.
|
[6] |
Fisher LJ. Development of retinal synaptic arrays in the inner plexiform layer of dark-reared mice[J]. J Embryol Exp Morphol, 1979, 54(Suppl 1): 219-227.
|
[7] |
Rachel RA, Dolen G, Hayes NL, et al. Spatiotemporal features of early neuronogenesis differ in wild-type and albino mouse retina[J]. J Neurosci, 2002, 22(11): 4249-4263.
|
[8] |
Galli-Resta L, Resta G, Tan SS, et al. Mosaics of islet-1-expressing amacrine cells assembled by short-range cellular interactions[J]. J Neurosci, 1997, 17(20): 7831-7838.
|
[9] |
Zhang J, Yang Z, Wu SM. Development of cholinergic amacrine cells is visual activity-dependent in the postnatal mouse retina[J]. J Comp Neurol, 2005, 484(3): 331-343.
|
[10] |
任蕾, 邸玉兰, 郑艳珍,等. 小鼠视网膜胆碱能无长突细胞阵列分布及发育过程中的变化[J]. 眼科新进展,2012,32(1):1-4.
|
[11] |
Kim IJ, Zhang Y, Yamagata M, et al. Molecular identification of a retinal cell type that responds to upward motion[J]. Nature, 2008, 452(7186): 478-482.
|
[12] |
Diao L, Sun W, Deng Q, et al. Development of the mouse retina: emerging morphological diversity of the ganglion cells[J]. J Neurobiol, 2004, 61(2): 236-249.
|
[13] |
Stacy RC, Wong RO. Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina[J]. J Comp Neurol, 2003, 456(2): 154-166.
|
[14] |
Oyster CW, Barlow HB. Direction-selective units in rabbit retina: distribution of preferred directions[J]. Science, 1967, 155(3764): 841-842.
|
[15] |
Sjöstrand FS.Movement perception, directionally selective ganglion cell responses and the involuntary eye movements. Neurophysiology at the level of information processing[J].J Submicrosc Cytol Pathol, 2004, 36(1): 1-5.
|
[16] |
Yonehara K, Ishikane H, Sakuta H, et al. Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion[J]. PLoS One, 2009, 4(1): e4320.
|
[17] |
Yonehara K, Shintani T, Suzuki R, et al.Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse[J].PLoS One, 2008, 3(2): e1533.
|
[18] |
Famiglietti EV. Dendritic co-stratification of ON and ON-OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina[J]. J Comp Neurol, 1992, 324(3): 322-335.
|
[19] |
Poznanski RR.Biophysical mechanisms and essential topography of directionally selective subunits in rabbit's retina[J].J Integr Neurosci, 2005, 4(3): 341-361.
|
[20] |
Borst A, Euler T. Seeing things in motion: models, circuits, and mechanisms[J]. Neuron, 2011, 71(6): 974-994.
|
[21] |
Borst A.In search of the Holy Grail of fly motion vision[J].Eur J Neurosci, 2014, 40(9): 3285-3293.
|
[22] |
Massey SC, Linn DM, Kittila CA, et al. Contributions of GABAA receptors and GABAC receptors to acetylcholine release and directional selectivity in the rabbit retina[J]. Vis Neurosci, 1997, 14(5): 939-948.
|
[23] |
Lukasiewicz PD, Eggers ED, Sagdullaev BT, et al.GABAC receptor-mediated inhibition in the retina[J].Vision Res, 2004, 44(28): 3289-3296.
|
[24] |
Yoshida K, Watanabe D, Ishikane H, et al. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement[J]. Neuron, 2001, 30(3): 771-780.
|
[25] |
Amthor FR, Keyser KT, Dmitrieva NA. Effects of the destruction of starburst-cholinergic amacrine cells by the toxin AF64A on rabbit retinal directional selectivity[J]. Vis Neurosci, 2002, 19(4): 495-509.
|
[26] |
Famiglietti EV.Neural architecture of the " transient" ON directionally selective (class IIb1) ganglion cells in rabbit retina, partly co-stratified with starburst amacrine cells[J].Vis Neurosci, 2016, 33: E004.
|
[27] |
Vaney DI. 'Coronate' amacrine cells in the rabbit retina have the 'starburst' dendritic morphology[J]. Proc R Soc Lond B Biol Sci, 1984, 220(1221): 501-508.
|
[28] |
Poznanski RR.Modelling the electrotonic structure of starburst amacrine cells in the rabbit retina: a functional interpretation of dendritic morphology[J].Bull Math Biol, 1992, 54(6): 905-928.
|
[29] |
Dong W, Sun W, Zhang Y, et al. Dendritic relationship between starburst amacrine cells and direction-selective ganglion cells in the rabbit retina[J]. J Physiol, 2004, 556(Pt 1): 11-7.
|
[30] |
Chen YC, Chiao CC.Symmetric synaptic patterns between starburst amacrine cells and direction selective ganglion cells in the rabbit retina[J].J Comp Neurol, 2008, 508(1): 175-183.
|
[31] |
Euler T, Detwiler PB, Denk W. Directionally selective calcium signals in dendrites of starburst amacrine cells[J]. Nature, 2002, 418(6900): 845-852.
|
[32] |
Hausselt SE, Euler T, Detwiler PB, et al.A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells[J].PLoS Biol, 2007, 5(7): e185.
|
[33] |
Enciso GA, Rempe M, Dmitriev AV, et al. A model of direction selectivity in the starburst amacrine cell network[J]. J Comput Neurosci, 2010, 28(3): 567-578.
|
[34] |
Poznanski RR.Cellular inhibitory behavior underlying the formation of retinal direction selectivity in the starburst network[J].J Integr Neurosci, 2010, 9(3): 299-335.
|
[35] |
Fried SI, Münch TA, Werblin FS.Mechanisms and circuitry underlying directional selectivity in the retina[J].Nature, 2002, 420(6914): 411-414.
|
[36] |
Taylor WR, Smith RG.The role of starburst amacrine cells in visual signal processing[J].Vis Neurosci, 2012, 29(1): 73-81.
|
[37] |
Wei W, Hamby AM, Zhou K, et al. Development of asymmetric inhibition underlying direction selectivity in the retina[J]. Nature, 2011, 469(7330): 402-406.
|
[38] |
Park SJ, Kim IJ, Looger LL, et al.Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning[J].J Neurosci, 2014, 34(11): 3976-3981.
|
[39] |
Dacheux RF, Chimento MF, Amthor FR. Synaptic input to the on-off directionally selective ganglion cell in the rabbit retina[J]. J Comp Neurol, 2003, 456(3): 267-278.
|
[40] |
Famiglietti EV.Synaptic organization of complex ganglion cells in rabbit retina: type and arrangement of inputs to directionally selective and local-edge-detector cells[J].J Comp Neurol, 2005 , 484(4): 357-391.
|
[41] |
Briggman KL, Denk W. Towards neural circuit reconstruction with volume electron microscopy techniques[J]. Curr Opin Neurobiol, 2006, 16(5): 562-570.
|
[42] |
Briggman KL, Bock DD.Volume electron microscopy for neuronal circuit reconstruction[J].Curr Opin Neurobiol, 2012, 22(1): 154-161.
|
[43] |
Morrie RD, Feller MB. An Asymmetric Increase in Inhibitory Synapse Number Underlies the Development of a Direction Selective Circuit in the Retina[J]. J Neurosci, 2015, 35(25): 9281-9286.
|
[44] |
Pei Z, Chen Q, Koren D, et al.Conditional Knock-Out of Vesicular GABA Transporter Gene from Starburst Amacrine Cells Reveals the Contributions of Multiple Synaptic Mechanisms Underlying Direction Selectivity in the Retina[J].J Neurosci, 2015, 35(38): 13219-13232.
|
[45] |
Briggman KL, Helmstaedter M, Denk W. Wiring specificity in the direction-selectivity circuit of the retina[J]. Nature, 2011, 471(7337): 183-188.
|
[46] |
Ding H, Smith RG, Poleg-Polsky A, et al.Species-specific wiring for direction selectivity in the mammalian retina[J].Nature, 2016, 535(7610): 105-110.
|
[47] |
Krishnaswamy A, Yamagata M, Duan X, et al. Sidekick 2 directs formation of a retinal circuit that detects differential motion[J]. Nature, 2015, 524(7566): 466-470.
|
[48] |
Jacoby J, Schwartz GW.Three Small-Receptive-Field Ganglion Cells in the Mouse Retina Are Distinctly Tuned to Size, Speed, and Object Motion[J].J Neurosci, 2017, 37(3): 610-625.
|
[49] |
Yonehara K, Fiscella M, Drinnenberg A, et al. Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity[J]. Neuron, 2016, 89(1): 177-193.
|
[50] |
Demb JB.Cellular mechanisms for direction selectivity in the retina[J].Neuron, 2007, 55(2): 179-186.
|
[51] |
Sivyer B, van Wyk M, Vaney DI, et al. Synaptic inputs and timing underlying the velocity tuning of direction-selective ganglion cells in rabbit retina[J]. J Physiol, 2010, 588(Pt 17): 3243-3253.
|
[52] |
Vaney DI, Sivyer B, Taylor WR.Direction selectivity in the retina: symmetry and asymmetry in structure and function[J].Nat Rev Neurosci, 2012, 13(3): 194-208.
|
[53] |
Ackert JM, Farajian R, Volgyi B, et al. GABA blockade unmasks an OFF response in ON direction selective ganglion cells in the mammalian retina[J]. J Physiol, 2009, 587(Pt18): 4481-4495.
|