切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2017, Vol. 07 ›› Issue (06) : 241 -244. doi: 10.3877/cma.j.issn.2095-2007.2017.06.001

所属专题: 文献

述评

重视角膜上皮屏障功能的保护
张明昌1,(), 谢华桃1   
  1. 1. 430022 华中科技大学同济医学院附属协和医院眼科
  • 收稿日期:2017-06-25 出版日期:2017-12-28
  • 通信作者: 张明昌
  • 基金资助:
    国家自然科学基金(81300736, 81370993)

Emphasizing the protection of corneal epithelial barrier function

Mingchang Zhang1,(), Huatao Xie1   

  1. 1. Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
  • Received:2017-06-25 Published:2017-12-28
  • Corresponding author: Mingchang Zhang
  • About author:
    Corresponding Author: Zhang Mingchang, Email:
引用本文:

张明昌, 谢华桃. 重视角膜上皮屏障功能的保护[J]. 中华眼科医学杂志(电子版), 2017, 07(06): 241-244.

Mingchang Zhang, Huatao Xie. Emphasizing the protection of corneal epithelial barrier function[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2017, 07(06): 241-244.

角膜缘干细胞是角膜上皮细胞健康、更新与修复的关键。角膜上皮屏障功能的完整性对于维系眼表健康尤其是角膜的透明性十分重要,它不仅可维持正常代谢所需眼内外营养物质的交换,也可抵御有害物或微生物侵袭。遗传、外伤、炎症、代谢、药物及手术等因素,均会影响角膜上皮屏障功能。针对角膜上皮屏障功能治疗重点是去除病因、促进上皮功能的恢复及重建眼表平衡等。本文中笔者对角膜上皮屏障的构成、角膜上皮功能障碍及角膜上皮屏障功能的保护与治疗策略等方面进行评述。

Limbal stem cells are the key to the health, renewal and repair of corneal epithelial cells. The integrity of the corneal epithelial barrier function is important for maintaining ocular surface health, especially the transparency of the cornea, not only to maintain the normal metabolism of essential nutrients within the eye exchange, but also against harmful substances or microbial invasion. Genetic, traumatic, inflammatory, metabolic, drug, surgery and other factors, will affect the corneal epithelial barrier function. The focus of treatment is to remove the causes, promote the recovery of epithelial function and reconstruct the ocular surface balance. In this paper, the composition of the corneal epithelial barrier, the dysfunction of the corneal epithelium, the protection of the corneal epithelial barrier function and the treatment strategy are reviewed.

[1]
Sun TT,Tseng SC,Lavker RM. Location of corneal epithelial stem cells[J]. Nature, 2010, 463(7284): 10-11.
[2]
Leong YY,Tong L. Barrier function in the ocular surface: from conventional paradigms to new opportunities[J]. Ocular Surface, 2015, 13(2): 103-109.
[3]
刘凡菲,李炜,刘祖国, 等. 角膜上皮屏障功能的研究现状[J]. 中华眼科杂志, 2016, 52(8): 631-635.
[4]
Barrandon Y. Crossing boundaries: stem cells, holoclones, and the fundamentals of squamous epithelial renewal[J]. Cornea, 2007, 26(1): 10-12.
[5]
Tseng SCG. Concept and application of limbal stem cells[J]. Eye, 1989, 3 (1): 141-157.
[6]
Rama P,Bonini S,Lambiase A, et al. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency[J]. Transplantation, 2001, 72(9): 1478-1485.
[7]
Barbaro V,Testa A,Di IE, et al. C/EBPδ regulates cell cycle and self-renewal of human limbal stem cells[J]. Journal of Cell Biology, 2007, 177(6): 1037-1049.
[8]
Schlötzer-Schrehardt U,Kruse FE. Identification and characterization of limbal stem cells[J]. Experimental Eye Research, 2005, 81(3): 247-264.
[9]
Chee KY,Kicic A,Wiffen SJ. Limbal stem cells: the search for a marker[J]. Clinical & Experimental Ophthalmology, 2010, 34(1): 64-73.
[10]
Dua HS,Miri A,Alomar T, et al. The role of limbal stem cells in corneal epithelial maintenance: testing the dogma[J]. Ophthalmology, 2009, 116(5): 856-863.
[11]
Meyerblazejewska EA,Call MK,Yamanaka O, et al. From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency[J]. Stem Cells, 2011, 29(1): 57-66.
[12]
Monteiro BG,Serafim RC,Melo GB, et al. Human immature dental pulp stem cells share key characteristic features with limbal stem cells[J]. Cell Proliferation, 2010, 42(5): 587-594.
[13]
Reinshagen H,Auwhaedrich C,Sorg RV, et al. Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits[J]. Acta Ophthalmologica, 2011, 89(8): 741-748.
[14]
Pfister RR. Corneal stem cell disease: concepts, categorization, and treatment by auto- and homotransplantation of limbal stem cells[J]. Clao J, 1994, 20(20): 64-72.
[15]
Sangwan VS. Limbal Stem Cells in Health and Disease[J]. Bioscience Reports, 2001, 21(4): 385-405.
[16]
Djalilian AR,Mahesh SPKoch CA,Nussenblatt RB, et al. Survival of donor epithelial cells after limbal stem cell transplantation[J]. Invest Ophthalmol Vis Sci, 2005, 46(3): 803-807.
[17]
Shaharuddin B,Ahmad S,Harvey I, et al. Optimisation of the side population assay for identification of limbal stem cells from both an immortalised corneal epithelial cell line and corneal limbal tissues[J]. Journal of Dental Education, 2014, 32(1): 107-108.
[18]
Qu L,Yang X,Wang X, et al. Reconstruction of corneal epithelium with cryopreserved corneal limbal stem cells in a rabbit model[J]. Veterinary Journal, 2010, 75(11): 1607-1616.
[19]
Sudha B,Madhavan HN,Sitalakshmi G, et al. Cultivation of human corneal limbal stem cells in Mebiol gel-A thermo-reversible gelation polymer[J]. Indian Journal of Medical Research, 2006, 124(6): 655-664.
[20]
Galal A,Perez-Santonja JJ,Rodriguez-Prats JL, et al. Human anterior lens capsule as a biologic substrate for the ex-vivo expansion of limbal stem cells in ocular surface reconstruction[J]. Cornea, 2007, 26(4): 473-478.
[21]
Argueso P. Glycobiology of the ocular surface: Mucins and lectins[J]. Japanese Journal of Ophthalmology, 2013, 57(2): 150-155.
[22]
Ban Y,Dota A,Cooper LJ, et al. Tight junction-related protein expression and distribution in human corneal epithelium[J]. Experimental Eye Research, 2003, 76(6): 663-669.
[23]
Yokoi N,Komuro A,Nishida K, et al. Effectiveness of hyaluronan on corneal epithelial barrier function in dry eye[J]. Bri J Ophthalmol, 1997, 81(7): 533-536.
[24]
Yokoi N,Kinoshita S. Clinical evaluation of corneal epithelial barrier function with the slit-lamp fluorophotometer[J]. Cornea, 1995, 14(5): 485-489.
[25]
Göbbels M,Spitznas M,Oldendoerp J. Impairment of corneal epithelial barrier function in diabetics[J]. Graefe′s Archive for Clinical and Experimental Ophthalmology, 1989, 227(2): 142-144.
[26]
Alarcon I,Tam C,Mun JJ, et al. Factors impacting corneal epithelial barrier function against Pseudomonas aeruginosa traversal[J]. Invest Ophthalmol Vis Sci, 2011, 52(3): 1368-1377.
[27]
Gekka M,Miyata K,Nagai Y, et al. Corneal epithelial barrier function in diabetic patients[J]. Cornea, 2004, 23(1): 35-37.
[28]
Furuse M,Hirase T,Itoh M, et al. Occludin: a novel integral membrane protein localizing at tight junctions[J]. Journal of Cell Biology, 1993, 123(6 Pt 2): 1777-1788.
[29]
Yoshida Y,Ban Y,Kinoshita S. Tight junction transmembrane protein claudin subtype expression and distribution in human corneal and conjunctival epithelium[J]. Invest Ophthalmol Vis Sci, 2009, 50(5): 2103-2108.
[30]
Mineta K,Yamamoto Y,Yamazaki Y, et al. Predicted expansion of the claudin multigene family[J]. FEBS Letters, 2011, 585(4): 606-612.
[31]
Khan R,Jeon JW,Jang LW, et al. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton[J]. Biochimica Et Biophysica Acta, 2008, 1778(3): 660-669.
[32]
孙旭光,王森. 重视白内障术后角膜上皮细胞功能障碍[J]. 中华眼科杂志, 2015, 51(3): 161-162.
[33]
曲景灏,王智群,张阳, 等. 白内障摘除术后角膜上皮功能障碍临床病例分析[J]. 中华眼科杂志, 2017, 53(3): 188-192.
[34]
Tabatabay CA,Bumbacher M,Baumgartner B, et al. Reduced number of hemidesmosomes in the corneal epithelium of diabetics with proliferative vitreoretinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 1988, 226(4): 389-392.
[35]
Quadrado MJ,Popper M,Morgado AM, et al. Diabetes and corneal cell densities in humans by in vivo confocal microscopy[J]. Cornea, 2006, 25(7): 761-768.
[36]
Shields RA,Rachitskaya A. Ocular trauma and airbag deployment[J]. Jama Ophthalmology, 2014, 132(10): 1245-1246.
[37]
Kimura K,Teranishi S,Nishida T. Interleukin-1beta-induced disruption of barrier function in cultured human corneal epithelial cells[J]. Invest Ophthalmol Vis Sci, 2009, 50(2): 597-603.
[38]
Contrerasruiz L,Schulze U,Garcíaposadas L, et al. Structural and functional alteration of corneal epithelial barrier under inflammatory conditions[J]. Current Eye Research, 2012, 37(11): 971-981.
[39]
Paiva CSD,Chotikavanich S,Pangelinan SB, et al. IL-17 disrupts corneal barrier following desiccating stress[J]. Mucosal Immunology, 2009, 2(3): 243-253.
[40]
Nagano T,Nakamura M,Nakata K, et al. Effects of substance P and IGF-1 in corneal epithelial barrier function and wound healing in a rat model of neurotrophic keratopathy[J]. Invest Ophthalmol Vis Sci, 2003, 44(9): 3810-3815.
[41]
Chen W,Li Z,Hu J, et al. Corneal Alternations Induced by Topical Application of Benzalkonium Chloride in Rabbit[J]. PloS One, 2011, 6(10): e26103.
[42]
Chen W,Hu J,Zhang Z, et al. Localization and Expression of Zonula Occludins-1 in the Rabbit Corneal Epithelium following Exposure to Benzalkonium Chloride[J]. PloS One, 2012, 7(7): e40893.
[43]
史伟云. 重视角膜上皮病变的诊断和治疗[J]. 中华眼科杂志, 2017, 53(3): 161-163.
[44]
Kadmiel M,Janoshazi A,Xu X, et al. Glucocorticoid action in human corneal epithelial cells establishes roles for corticosteroids in wound healing and barrier function of the eye[J]. Experimental Eye Research, 2016, 152: 10-33.
[45]
Jones RD,Rhee DJ. Corticosteroid-induced ocular hypertension and glaucoma: a brief review and update of the literature[J]. Current Opinion in Ophthalmology, 2006, 17(2): 163-167.
[46]
Aggarwal S,Kheirkhah A,Cavalcanti BM, et al. Autologous Serum Tears for Treatment of Photoallodynia in Patients with Corneal Neuropathy: Efficacy and Evaluation with In Vivo Confocal Microscopy[J]. Ocular Surface, 2015, 13(3): 250-262.
[47]
Shimazaki J,Shigeyasu C,Saijoban Y, et al. Effectiveness of bandage contact lens application in corneal epithelialization and pain alleviation following corneal transplantation; prospective, randomized clinical trial[J]. BMC Ophthalmology, 2016, 16(1): 174.
[48]
Tseng SC,Espana EM,Kawakita T, et al. How does amniotic membrane work?[J]. The Ocular Surface, 2004, 2(3): 177-187.
[49]
Tseng SC,He H,Zhang S, et al. Niche Regulation of Limbal Epithelial Stem Cells: Relationship between Inflammation and Regeneration[J]. Ocular Surface, 2016, 14(2): 100-112.
[50]
Dua HS,Azuara-Blanco A. Limbal Stem Cells of the Corneal Epithelium[J]. Survey of Ophthalmology, 2000, 44(5): 415-425.
[51]
Lin MC,Graham AD,Fusaro RE, et al. Impact of rigid gas-permeable contact lens extended wear on corneal epithelial barrier function[J]. Invest Ophthalmol Vis Sci, 2002, 43(4): 1019-1024.
[52]
Lehrer MS,Sun TT,Lavker RM. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation[J]. Journal of Cell Science, 1998, 111 (19): 2867-2875.
[53]
Chen Z,De Paiva CS,Luo L, et al. Characterization of Putative Stem Cell Phenotype in Human Limbal Epithelia[J]. Stem Cells, 2010, 22(3): 355-366.
[54]
Min K,Turnquist H,Jackson J, et al. The Multidrug Resistance Transporter ABCG2 (Breast Cancer Resistance Protein 1) Effluxes Hoechst 33342 and Is Overexpressed in Hematopoietic Stem Cells[J]. Clinical Cancer Research, 2002, 8(1): 22-28.
[55]
Zauberman NA,Artornsombudh P,Elbaz U, et al. Anterior Stromal Puncture for the Treatment of Recurrent Corneal Erosion Syndrome: Patient Clinical Features and Outcomes[J]. Am J Ophthalmol, 2014, 157(2): 273-279.
[1] 赵希伟, 周佳伟, 刘凯, 侯林义, 张文凯. 连接蛋白43通过蛋白激酶A介导丝氨酸373调控脓毒症急性肺损伤肺泡Ⅱ型上皮细胞屏障功能的研究[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 355-361.
[2] 乔莉, 赵超, 孙昊, 陈洁, 王军, 张劲松. 参附注射液对脂多糖所致肺泡细胞损伤的保护作用[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 362-367.
[3] 赵彦琴, 李玉兰, 程晓彤, 李春兰, 殷玉江. 短时间高氧对肺泡Ⅱ型上皮细胞线粒体活性氧产生及相关通路的影响[J]. 中华危重症医学杂志(电子版), 2020, 13(06): 427-431.
[4] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[5] 李大伟, 申传安, 刘兆兴, 臧宇, 张文, 马景龙. 严重烧伤后肠屏障功能障碍的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 65-68.
[6] 孙笑非, 顾依群, 王爱春, 王荔, 孟凡凡, 王军, 卢利娟. 细胞块p16/Ki-67双染对子宫颈炎患者宫颈上皮内瘤变的诊断价值[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 418-425.
[7] 王强, 陈鑫, 翁小雪, 庄永泽, 俞国庆. 硫酸吲哚酚通过TGF-β1诱导腹膜间皮细胞转分化[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 329-334.
[8] 孙艳华. 围绝经期干眼患者结膜上皮细胞中miR-146a、TRAF6的表达研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 279-283.
[9] 薛玲玲, 陈锦阳, 庄盼, 刘军权. 人羊膜上皮细胞和人羊膜间充质干细胞的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(03): 184-188.
[10] 孙文琦, 吴欣荣, 王运荣, 赵贝, 窦晓坛, 李雯, 邹晓平, 王雷, 陈敏. 结直肠上皮细胞ROS及FH检测对结直肠癌筛查的应用价值[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 326-330.
[11] 贾丽芳, 张玉萍, 白文英, 周培一, 王甲正. 长链非编码核糖核酸LINC00261通过miR-148b-3p/PTEN途径对高糖环境中HK-2细胞的保护作用[J]. 中华肾病研究电子杂志, 2022, 11(01): 22-28.
[12] 陈钰澜, 陈健文, 朱飞, 王田田, 张妍, 刘娇娜, 黄梦杰, 吴玲玲, 陈香美. 紫草素抑制缺血再灌注肾损伤后肾小管细胞的增殖和迁移[J]. 中华肾病研究电子杂志, 2022, 11(01): 15-21.
[13] 张紫薇, 卢弘. 脂多糖受体复合体在急性前葡萄膜炎虹膜色素上皮细胞中作用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 167-171.
[14] 李豪亮, 朱然, 张希熹, 梁舒. 柚皮素对人角膜上皮细胞毒性的实验研究[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 41-47.
[15] 刘疏柯, 刘思佚, 魏伏, 古妮娜, 张丹. 乌司他丁对炎症状态下血管内皮屏障功能的影响及机制[J]. 中华重症医学电子杂志, 2020, 06(04): 424-430.
阅读次数
全文


摘要