切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2025, Vol. 15 ›› Issue (04) : 230 -236. doi: 10.3877/cma.j.issn.2095-2007.2025.04.007

综述

马方综合征眼科影像组学的研究进展
张磊, 周健()   
  1. 710032 西安,空军军医大学西京医院眼科 全军眼科研究所
  • 收稿日期:2025-07-12 出版日期:2025-08-28
  • 通信作者: 周健
  • 基金资助:
    陕西省重点研发计划项目(2024SF2-GJHX-39); 空军军医大学临床研究项目(2024LC2414)

Advances in ophthalmic imaging omics research of Marfan syndrome

Lei Zhang, Jian Zhou()   

  1. Department of Ophthalmology, Eye Institute of PLA, Xijing Hospital, Fourth Military Medical University, Xi′an 710032, China
  • Received:2025-07-12 Published:2025-08-28
  • Corresponding author: Jian Zhou
引用本文:

张磊, 周健. 马方综合征眼科影像组学的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(04): 230-236.

Lei Zhang, Jian Zhou. Advances in ophthalmic imaging omics research of Marfan syndrome[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2025, 15(04): 230-236.

马方综合征(MFS)的早期筛查对降低相关死亡率具有关键意义。当前MFS临床诊断主要依据2010年修订的Ghent标准,其核心特征为晶状体异位(EL)及主动脉根部扩张。现代眼科影像技术可以助力发现MFS超越EL的深层生物标志物谱,如眼轴增长和总角膜屈光力降低;角膜曲率值降低、中央角膜厚度变薄及角膜硬度增加;睫状体变薄、巩膜厚度降低及不对称性增加;视网膜微血管密度下降、视网膜神经纤维层变薄及视网膜脱离风险增加;脉络膜结构与功能异常和面部特征性等改变。基于人工智能的眼科影像组学模型通过整合眼部的影像和生物测量等多模态影像数据,可构建高精度预测工具,显著提升对MFS筛查敏感性及准确性。该策略不仅有助于MFS的早期筛查,还可实现疾病进展的动态监测,辅助指导个体化心血管病变的干预,最终优化患者全生命周期管理。

Early screening for Marfan syndrome (MFS) is crucial in reducing related mortality rates. The current clinical diagnosis of MFS is mainly based on the Ghent criteria revised in 2010, with core features of lens ectopia (EL) and aortic root dilation. Modern ophthalmic imaging technology can help discover deep biomarker spectra beyond EL in MFS, such as axial elongation and reduced total corneal refractive power; the corneal curvature value decreases, the central corneal thickness becomes thinner, and the corneal hardness increases; thinning of the ciliary body, decreased thickness of the sclera, and increased asymmetry; decreased retinal microvascular density, thinning of retinal nerve fiber layer, and increased risk of retinal detachment; changes in choroidal structure and function abnormalities, as well as facial features. The ophthalmic imaging omics model based on artificial intelligence integrates multimodal imaging data such as eye images and biometric measurements to construct high-precision prediction tools, could significantly improve sensitivity and accuracy in MFS screening. This strategy not only facilitates early screening of MFS, but also enables dynamic monitoring of disease progression, assists in guiding personalized interventions for cardiovascular disease, and ultimately optimizes patient lifecycle management.

图1 马方综合征眼科影像组学标志物改变与主动脉扩张关联示意图
[1]
Milewicz DM, Braverman AC, De Backer J, et al. Marfan syndrome[J]. Nature reviews. Disease primers, 2021, 7(1): 64.
[2]
Lepore V, Jeppsson A, Rådberg G, et al. Aortic surgery in patients with marfan syndrome: long-term survival, morbidity and function[J]. The Journal of Heart Valve Disease, 2001, 10(1): 25-30.
[3]
Groth KA, Hove H, Kyhl K, et al. Prevalence, incidence, and age at diagnosis in Marfan Syndrome[J]. Orphanet Journal of Rare Diseases, 2015, 10: 153.
[4]
Muiño-Mosquera L, Cervi E, De Groote K, et al. Management of aortic disease in children with FBN1-related Marfan syndrome[J]. European Heart Journal, 2024, 45(39): 4156-4169.
[5]
Zhu Z, Wang Y, Qi Z, et al. Oculomics: Current concepts and evidence[J]. Progress in Retinal and Eye Research, 2025, 106: 101350.
[6]
Drolsum L, Rand-Hendriksen S, Paus B, et al. Ocular findings in 87 adults with Ghent-1 verified Marfan syndrome[J]. Acta ophthalmologica, 2015, 93(1): 46-53.
[7]
Sharma T, Gopal L, Shanmugam MP, et al. Retinal detachment in Marfan syndrome: clinical characteristics and surgical outcome[J]. Retina (Philadelphia, Pa.), 2002, 22(4): 423-428.
[8]
Giordano N, Geraci S, Santacroce C, et al. Usefulness of online bibliographic research in biomedical research, with an application to the epidemiologic study of genetic osteopathy[J]. Annali dell'Istituto Superiore Di Sanita, 2000, 36(3): 351-361.
[9]
Wang Y, Lian Z, Zhou Y, et al. Differential diagnosis of Marfan syndrome based on ocular biologic parameters[J]. Annals of translational medicine, 2020, 8(21): 1354.
[10]
Jin G, Zou M, Li L, et al. Corneal biomechanics and their association with severity of lens dislocation in Marfan syndrome[J]. International ophthalmology, 2024, 44(1): 148.
[11]
Gehle P, Goergen B, Pilger D, et al. Biometric and structural ocular manifestations of Marfan syndrome[J]. PloS one, 2017, 12(9): e0183370.
[12]
Sultan G, Baudouin C, Auzerie O, et al. Cornea in Marfan disease: Orbscan and in vivo confocal microscopy analysis[J]. Investigative ophthalmology & visual science, 2002, 43(6): 1757-1764.
[13]
Heur M, Costin B, Crowe S, et al. The value of keratometry and central corneal thickness measurements in the clinical diagnosis of Marfan syndrome[J]. American journal of ophthalmology, 2008, 145(6): 997-1001.
[14]
Chen TH, Miao AZ, Wang YL, et al. Evaluation of axial length/total corneal refractive power ratio as a potential marker for ocular diagnosis of Marfan's syndrome in children[J]. International journal of ophthalmology, 2021, 14(8): 1218-1224.
[15]
Chen T, Chen J, Jin G, et al. Clinical Ocular Diagnostic Model of Marfan Syndrome in Patients With Congenital Ectopia Lentis by Pentacam AXL System[J]. Translational vision science & technology, 2021, 10(7): 3.
[16]
Iordanidou V, Sultan G, Boileau C, et al. In vivo corneal confocal microscopy in marfan syndrome[J]. Cornea, 2007, 26(7): 787-792.
[17]
Vanhonsebrouck E, Consejo A, Coucke PJ, et al. The corneoscleral shape in Marfan syndrome[J]. Acta ophthalmologica, 2021, 99(4): 405-410.
[18]
Jia WN, Wang QY, Niu LL, et al. Morphometric Assessment of the Ciliary Body in Patients With Marfan Syndrome and Ectopia Lentis: A Quantitative Study Using Ultrasound Biomicroscopy[J]. American journal of ophthalmology, 2023, 251: 24-31.
[19]
Alluyn L, Dequeker L, Dhaese S, et al. Anterior scleral thickness in Marfan syndrome: A quantitative analysis[J]. Acta ophthalmologica, 2024, 102(7): e1050-e1056.
[20]
Di Marino M, Cesareo M, Aloe G, et al. Retinal and Choroidal Vasculature in Patients with Marfan Syndrome[J]. Translational vision science & technology, 2020, 9(9): 5.
[21]
Chen H, Ng KY, Li S, et al. Characteristics of the foveal microvasculature in children with marfan syndrome: An Optical Coherence Tomography Angiography Study[J]. Retina (Philadelphia, Pa.), 2022, 42(1): 138-151.
[22]
Xu W, Kurup SP, Fawzi AA, et al. Comparative data on SD-OCT for the retinal nerve fiber layer and retinal macular thickness in a large cohort with Marfan syndrome[J]. Ophthalmic genetics, 2017, 38(1): 34-38.
[23]
Ng K, Xu P, Jin G, et al. Quantitative analysis of choriocapillaris flow deficits and choroidal thickness in children with Marfan syndrome[J]. The British Journal of Ophthalmology, 2024, 108(2): 274-279.
[24]
Wu JH, Liu T. Application of Deep Learning to Retinal-Image-Based Oculomics for Evaluation of Systemic Health: A Review[J]. Journal of Clinical Medicine, 2022, 12(1): 152.
[25]
Wang G, Liu C, Wu Q, et al. Systematical analysis of underlying markers associated with Marfan syndrome via integrated bioinformatics and machine learning strategies[J]. Journal of Biomolecular Structure & Dynamics, 2024, 42(11): 5713-5724.
[26]
Stone JH. Ectopia lentis, cardiology, and " the sign of the tremulous iris" [J]. American heart journal, 1966, 72(4): 466-468.
[27]
Ribeiro WN, Leite WF, Vallim AL, et al. Evaluation of the clinical features of an outpatient cohort with Marfan syndrome[J]. International journal of cardiology, 2025, 418: 132604.
[28]
Chandra A, Charteris D. Molecular pathogenesis and management strategies of ectopia lentis[J]. Eye, 2014, 28(2): 162-168.
[29]
Nemet AY, Assia EI, Apple DJ, et al. Current Concepts of Ocular Manifestations in Marfan Syndrome[J]. Survey of Ophthalmology, 2006, 51(6): 561-575.
[30]
Viljoen D. Congenital contractural arachnodactyly (Beals syndrome)[J]. Journal of Medical Genetics, 1994, 31(8): 640-643.
[31]
Li JT, Chen ZX, Chen XJ, et al. Mutation analysis of SUOX in isolated sulfite oxidase deficiency with ectopia lentis as the presenting feature: insights into genotype-phenotype correlation[J]. Orphanet Journal of Rare Diseases, 2022, 17(1): 392.
[32]
Rothe MJ, Grant-Kels JM, Kels BD. Ocular and cutaneous manifestations of heritable disorders of collagen and elastic tissue[J]. Dermatologic Clinics, 1992, 10(3): 591-595.
[33]
Faivre L, Dollfus H, Lyonnet S, et al. Clinical homogeneity and genetic heterogeneity in Weill-Marchesani syndrome[J]. American Journal of Medical Genetics. Part A, 2003, 123(2): 204-207.
[34]
Gus PI, Donis KC, Marinho D, et al. Ocular manifestations in classic homocystinuria[J]. Ophthalmic Genetics, 2021, 42(1): 71-74.
[35]
Koenig SB, Mieler WF. Management of ectopia lentis in a family with Marfan syndrome[J]. Archives of Ophthalmology (Chicago, Ill.: 1960), 1996, 114(9): 1058-1061.
[36]
Guo H, Wu X, Cai K, et al. Weill-Marchesani syndrome with advanced glaucoma and corneal endothelial dysfunction: a case report and literature review[J]. BMC ophthalmology, 2015, 15: 3.
[37]
Bosun I. Secondary glaucoma in the Weill-Marchesani syndrome[J]. Oftalmologia (Bucharest, Romania: 1990), 1993, 37(4): 335-338.
[38]
el Kettani A, Hamdani M, Rais L, et al. Weill Marchesani syndrome. Report of a case[J]. Journal Francais D'ophtalmologie, 2001, 24(9): 944-948.
[39]
Chung JL, Kim SW, Kim JH, et al. A case of Weill-Marchesani syndrome with inversion of chromosome 15[J]. Korean journal of ophthalmology: KJO, 2007, 21(4): 255-260.
[40]
Shafique M, Muzaffar W, Ishaq M. The eye as a window to a rare disease: ectopia lentis and homocystinuria, a Pakistani perspective[J]. International Ophthalmology, 2016, 36(1): 79-83.
[41]
Alzwaihri AS, Almasoudi EA, Hadrawi MT, et al. Incidence and risk factors of ocular complications among patients with homocystinuria in Saudi Arabia: a cross-sectional study[J]. Annals of Medicine and Surgery (2012), 2025, 87(5): 2602-2607.
[42]
Loeys BL, Dietz HC, Braverman AC, et al. The revised Ghent nosology for the Marfan syndrome[J]. Journal of Medical Genetics, 2010, 47(7): 476-485.
[43]
Chipeta C, Aragon-Martin J, Chandra A. Zonulopathies as Genetic Disorders of the Extracellular Matrix[J]. Genes, 2024, 15(12): 1632.
[44]
Kaur K, Gurnani B. Ectopia Lentis [EB/OL]. StatPearls Internet. Treasure Island (FL): StatPearls Publishing, 2023.
[45]
Lian Z, Hu Y, Liu Z, et al. Longitudinal changes of refractive error in preschool children with congenital ectopia lentis[J]. International ophthalmology, 2024, 44(1): 85.
[46]
Bassnett S. Zinn's zonule[J]. Progress in Retinal and Eye Research, 2021, 82: 100902.
[47]
Nelson LB, Maumenee IH. Ectopia lentis[J]. Survey of ophthalmology, 1982, 27(3): 143-160.
[48]
Motawa MN, Shehri MS, Al Buali MJ, et al. Weill-Marchesani Syndrome, a Rare Presentation of Severe Short Stature with Review of the Literature[J]. The American Journal of Case Reports, 2021, 22: e930824-e930828.
[49]
Liu X, Niu L, Zhang L, et al. Clinical and genetic findings in Chinese families with congenital ectopia lentis[J]. Molecular Genetics & Genomic Medicine, 2023, 11(5): e2140.
[50]
Chen J, Jing Q, Tang Y, et al. Age Differences in Axial Length, Corneal Curvature, and Corneal Astigmatism in Marfan Syndrome with Ectopia Lentis[J]. Journal of Ophthalmology, 2018: 1436834.
[51]
Izquierdo LJ, Gomez I, Moctezuma C, et al. Biometric and corneal characteristics in marfan syndrome with ectopia lentis[J]. Journal francais d'ophtalmologie, 2024, 47(4): 104096.
[52]
Mueller GC, Stark V, Steiner K, et al. The Kid-Short Marfan Score (Kid-SMS) - an easy executable risk score for suspected paediatric patients with Marfan syndrome[J]. Acta Paediatrica (Oslo, Norway: 1992), 2013, 102(2): e84-e89.
[53]
Stark VC, Arndt F, Harring G, et al. Kid-Short Marfan Score (Kid-SMS) Is a Useful Diagnostic Tool for Stratifying the Pre-Test Probability of Marfan Syndrome in Childhood[J]. Diseases (Basel, Switzerland), 2015, 3(1): 24-33.
[54]
Luebke J, Boehringer D, Eberwein P, et al. Corneal K-Values as a Diagnostic Screening Tool for Marfan Syndrome[J]. Cornea, 2017, 36(6): 700-703.
[55]
Chen ZX, Jia WN, Chen TH, et al. Genotype Impacts Axial Length Growth in Pseudophakic Eyes of Marfan Syndrome[J]. Investigative Ophthalmology & Visual Science, 2023, 64(10): 28.
[56]
Vakalopoulos DG, Lampsas S, Chatzea MS, et al. Refractive Alterations in Marfan Syndrome: A Narrative Review[J]. Medicina, 2025, 61(2): 250.
[57]
Fan Y, Huang Y, Huang X. Association between Axial Length to Corneal Curvature Radius Ratio and Myopia in Adult Patients[J]. Journal of Ophthalmology, 2024: 4981095.
[58]
Konradsen TR, Koivula A, Kugelberg M, et al. Corneal curvature, pachymetry, and endothelial cell density in Marfan syndrome[J]. Acta ophthalmologica, 2012, 90(4): 375-379.
[59]
Chen J, Jing Q, Tang Y, et al. Corneal Curvature, Astigmatism, and Aberrations in Marfan Syndrome with Lens Subluxation: Evaluation by Pentacam HR System[J]. Scientific Reports, 2018, 8: 4079.
[60]
Salchow DJ, Gehle P. Ocular manifestations of Marfan syndrome in children and adolescents[J]. European Journal of Ophthalmology, 2019, 29(1): 38-43.
[61]
Singh J, Wanjari A. Cardiac Complications in Marfan Syndrome: A Review[J]. Cureus, 2022, 14(9): e29800.
[62]
Neptune ER, Frischmeyer PA, Arking DE, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome[J]. Nature Genetics, 2003, 33(3): 407-411.
[63]
Rezar-Dreindl S, Eibenberger K, Told R, et al. Microvascular Retinal Changes in Patients with Marfan Syndrome[J]. Current Eye Research, 2022, 47(8): 1186-1192.
[64]
Liu Y, Chen T, Jiang Y. What Should We Pay More Attention to Marfan Syndrome Expecting Ectopia Lentis: Incidence and Risk Factors of Retinal Manifestations[J]. Journal of Personalized Medicine, 2023, 13(3): 398.
[65]
Liu Y, Ju Y, Chen T hui, et al. Genotype-phenotype Correlations of Ocular Posterior Segment Abnormalities in Marfan Syndrome[J]. Ophthalmology Science, 2024, 4(5): 100526.
[66]
Abdelmassih Y, Lecoge R, El Hassani M, et al. Risk Factors for Retinal Detachment in Marfan Syndrome After Pediatric Lens Removal[J]. American Journal of Ophthalmology, 2024, 266: 190-195.
[67]
Chen T, Deng M, Zhang M, et al. Visual outcomes of lens subluxation surgery with Cionni modified capsular tension rings in Marfan syndrome[J]. Scientific Reports, 2021, 11: 2994.
[68]
Ramakrishnan S, Sulochana KN, Lakshmi S, et al. Biochemistry of homocysteine in health and diseases[J]. Indian Journal of Biochemistry & Biophysics, 2006, 43(5): 275-283.
[69]
Mohamed R, Sharma I, Ibrahim AS, et al. Hyperhomocysteinemia Alters Retinal Endothelial Cells Barrier Function and Angiogenic Potential via Activation of Oxidative Stress[J]. Scientific Reports, 2017, 7(1): 11952.
[70]
Kjeldsen S, Andersen N, Groth K, et al. Ocular morbidity in Marfan syndrome: a nationwide epidemiological study[J]. The British Journal of Ophthalmology, 2023, 107(8): 1051-1055.
[71]
Wheatley H, Traboulsie E, Flowers B, et al. Immunohistochemical Locallzation of Fibrillin in human ocular-tissues-relevance to the marfan-syndrome[J]. Archives of ophthalmology, 1995, 113(1): 103-109.
[72]
Lipscomb KJ, Clayton-Smith J, Harris R. Evolving phenotype of Marfan's syndrome[J]. Archives of Disease in Childhood, 1997, 76(1): 41-46.
[73]
Johnson CM, Spruiell B, Wiesen C, et al. Craniofacial characterization of Marfan Syndrome[J]. Orthodontics & Craniofacial Research, 2019, 22 (1): 56-61.
[74]
Dolci C, Pucciarelli V, Gibelli DM, et al. The face in marfan syndrome: A 3D quantitative approach for a better definition of dysmorphic features[J]. Clinical Anatomy (New York, N.Y.), 2018, 31(3): 380-386.
[75]
Ting BL, Mathur D, Loeys BL, et al. The diagnostic value of the facial features of Marfan syndrome[J]. Journal of Children's Orthopaedics, 2010, 4(6): 545-551.
[76]
Saksenberg D, Mukherjee S, Zafar MA, et al. Pilot study exploring artificial intelligence for facial-image-based diagnosis of Marfan syndrome[J]. Heliyon, 2024, 10(13): e33858.
[77]
Beetz NL, Maier C, Shnayien S, et al. Artificial intelligence‐based analysis of body composition in Marfan: skeletal muscle density and psoas muscle index predict aortic enlargement[J]. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12(4): 993-999.
[78]
Patterson EJ, Bounds AD, Wagner SK, et al. Oculomics: A Crusade Against the Four Horsemen of Chronic Disease[J]. Ophthalmology and Therapy, 2024, 13(6): 1427-1451.
[79]
Li R, Chen W, Li M, et al. LensAge index as a deep learning-based biological age for self-monitoring the risks of age-related diseases and mortality[J]. Nature Communications, 2023, 14(1): 7126.
[80]
Lee R, Kumar R, Weaver A, et al. Cornea Oculomics: A Clinical Blueprint for Extending Corneal Diagnostics and Artificial Intelligence in Systemic Health Insights[J]. Diagnostics (Basel, Switzerland), 2025, 15(5): 643.
[81]
Li Z, Yin S, Wang S, et al. Transformative applications of oculomics-based AI approaches in the management of systemic diseases: A systematic review[J]. Journal of Advanced Research, 2025, 75: 679-696.
[82]
Ong J, Jang KJ, Baek SJ, et al. Development of oculomics artificial intelligence for cardiovascular risk factors: A case study in fundus oculomics for HbA1c assessment and clinically relevant considerations for clinicians[J]. Asia-Pacific Journal of Ophthalmology (Philadelphia, Pa.), 2024, 13(4): 100095.
[1] 周欣, 梁豪进, 邓振宇, 肖菊花, 周小军. 基于人工智能技术评价江西省孕11~13+6周产前超声筛查质量现状及提出能力提升对策[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 850-857.
[2] 张振奇, 齐艺涵, 王璐, 胡紫玥, 李婷婷, 卢漫. 大语言模型DeepSeek-R1在甲状腺超声报告质量控制中的初步应用[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 832-837.
[3] 江瑶, 蒋程, 余翔, 谭莹, 温昕, 温慧莹, 彭桂艳, 李胜利. 基于注意力机制改进的子宫解剖结构检测与分割多任务模型的性能评估[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 703-710.
[4] 陈明朗, 许凯, 黄稚熙, 梁博诚, 贺杰, 黄海珊, 马微波, 谭莹, 邹志英, 刘晓棠, 彭桂艳, 陈家希, 钟晓红. MobileNetV4:面向产前超声的主动脉弓分支异常智能诊断研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 711-720.
[5] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[6] 刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.
[7] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[8] 毛俊, 蔡兆伦, 尹晓南, 沈朝勇, 张波. 影像组学预测模型在胃肠间质瘤诊断及预后中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2025, 19(06): 421-425.
[9] 梅昊楠, 杨瑞, 刘修恒. 人工智能辅助病理学图像分析在前列腺癌诊断中的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 1-7.
[10] 丁小博, 陈洁, 王艳波. 人工智能在泌尿系结石诊治中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 15-21.
[11] 樊帆, 黄浩, 付莉丽, 周春梅, 马雪霞, 黄海. 下尿路功能障碍患者智能化尿控标准病房的建设及成效[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2026, 20(01): 44-50.
[12] 左泽平, 宇洪涛, 朱金海, 钱俊杰, 徐秀民, 王一行, 梁朝朝, 郝宗耀. 智能无线腔镜在超微通道经皮肾镜取石术中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 736-741.
[13] 薛怡宁, 兰雅迪, 刘兆宇, 史磊, 赵琪, 许洪伟. 基于图像的人工智能在胃癌中的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 670-675.
[14] 江学良. 人工智能在炎症性肠病诊疗中的研究进展与应用展望[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(06): 680-680.
[15] 常芳媛, 乔春梅, 王欣, 王博冉, 赵梓孚, 李春歌, 王晓磊. 多模态超声及人工智能在细菌性和非细菌性关节炎中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(08): 606-611.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?