切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2025, Vol. 15 ›› Issue (03) : 129 -134. doi: 10.3877/cma.j.issn.2095-2007.2025.03.001

述评

重视人工智能在构建眼底疾病三级诊疗筛查体系中的应用
陈欢, 李梦涵, 于伟泓()   
  1. 100730 中国医学科学院北京协和医学院 北京协和医院眼科 眼底病智能诊断及药械研发与转化北京市重点实验室 中国医学科学院眼底病重点实验室
  • 收稿日期:2025-05-03 出版日期:2025-06-28
  • 通信作者: 于伟泓
  • 基金资助:
    北京市科技计划医药创新品种级平台培育项目(Z241100009024018); 国家重点研发计划(2022YFB4702905); 北京协和医院中央高水平医院临床科研专项项目(2022-PUMCH-C-61)

Pay attention to the application of artificial intelligence in constructing a three-tier screening and diagnosis-treatment system for ocular fundus diseases

Huan Chen, Menghan Li, Weihong Yu()   

  1. Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing Key Laboratory of Fundus Diseases Intelligent Diagnosis & Drug/Device Development and Translation; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing 100730, China
  • Received:2025-05-03 Published:2025-06-28
  • Corresponding author: Weihong Yu
引用本文:

陈欢, 李梦涵, 于伟泓. 重视人工智能在构建眼底疾病三级诊疗筛查体系中的应用[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 129-134.

Huan Chen, Menghan Li, Weihong Yu. Pay attention to the application of artificial intelligence in constructing a three-tier screening and diagnosis-treatment system for ocular fundus diseases[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2025, 15(03): 129-134.

面对眼底疾病高发与基层诊疗资源不足的现状,人工智能(AI)为三级诊疗筛查体系带来变革。眼底影像AI筛查利用自动化分析技术提升基层筛查效率与精准度;远程阅片依托AI打破地域限制,促进医疗资源共享;AI辅助转诊机制则通过智能评估优化患者分流。三者协同构建智能化诊疗闭环,可为提升眼底疾病防治水平和推动分级诊疗机制的实施提供新路径。但需注意,AI技术在临床验证和数据安全方面仍存在挑战,亟待探索解决方案。

In the face of the high prevalence of fundus diseases and the insufficient grassroots diagnostic resources, artificial intelligence (AI) is bringing transformative changes to the three-tiered diagnostic screening system. AI-based fundus imaging screening leverages automated analysis techniques to enhance the efficiency and accuracy of grassroots screening. Remote image interpretation, powered by AI, breaks geographical barriers and facilitates the sharing of medical resources. Additionally, the AI-assisted referral mechanism optimizes patient triage through intelligent assessment. These three components synergistically construct an intelligent diagnostic and treatment loop, offering new pathways to improve the prevention and treatment of fundus diseases and promote the implementation of tiered medical care. However, it is important to note that AI technology still faces challenges in clinical validation and data security, which urgently need to explore solutions.

[1]
GBD 2019 Blindness and Vision Impairment Collaborators Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020[J]. Lancet Glob Health, 2021, 9(2): 144-160.
[2]
Zhou C, Li S, Ye L, et al. Visual impairment and blindness caused by retinal diseases: A nationwide register-based study[J]. J Glob Health, 2023, 13: 04126.
[3]
Hao Z, Xu R, Huang X, et al. Application and observation of artificial intelligence in clinical practice of fundus screening for diabetic retinopathy with non-mydriatic fundus photography[J]. Ther Adv Chronic Dis, 2022, 13: 20406223221097335.
[4]
卫新. 国家卫生健康委发布中国眼健康白皮书[J]. 中国卫生画报2020,29(6) :52-53.
[5]
Redd TK, Campbell JP, Brown JM, et al. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity[J]. Br J Ophthalmol, 2019, 103: 580-584
[6]
Cleveland SD, Baker MJ, Erdman AG, et al. Current and future directions for the use of handheld. fundus cameras in telehealth[J]. Expert review of medical devices, 2025, 30:1-9
[7]
Rajalakshmi R, Prathiba V, Arulmalar S, et al. Review of retinal cameras for global coverage of diabetic retinopathy screening[J]. Eye (London, England) 2021, 35(1): 162-172
[8]
Lin D, Xiong J, Liu C, et al. Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system[J]. Lancet Digit Health 2021, 3(8): 486-495.
[9]
Zedan MJM, Zulkifley MA, Ibrahim AA, et al. Automated Glaucoma Screening and Diagnosis Based on Retinal Fundus Images Using Deep Learning Approaches: A Comprehensive Review[J]. Diagnostics (Basel), 2023, 13(13): 2180.
[10]
Madduri VK, Rao BS. Detection and diagnosis of diabetic eye diseases using two phase transfer learning approach[J]. Peer J Comput Sci, 2024, 10: 2135.
[11]
Dai L, Wu L, Li H, et al. A deep learning system for detecting diabetic retinopathy across the disease spectrum[J]. Nature communications, 2021, 12(1): 3242.
[12]
Zou Y, Wang Y, Kong X, et al. Deep Learner System Based on Focal Color Retinal Fundus Images to Assist in Diagnosis[J]. Diagnostics (Basel), 2023, 13(18): 2985.
[13]
Xu Y, Wang Y, Liu B, et al. The diagnostic accuracy of an. intelligent and automated fundus disease image assessment system with lesion quantitative function (SmartEye) in diabetic patients[J]. BMC Ophthalmol, 2019, 19(1): 184.
[14]
Gegundez ME, Marin D, Ponte B, et al. A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis[J]. Comput Biol Med, 2017, 88: 100-109.
[15]
Al-Jarrah MA, Shatnawi H. Non-proliferative diabetic retinopathy symptoms detection and. classification using neural network[J]. J Med Eng Technol, 2017, 41(6): 498-505.
[16]
Cao S, Zhang R, Jiang A, et al. Application effect of an artificial intelligence-based fundus screening system[J]. Biomedical engineering online, 2023, 22(1): 38.
[17]
Midena E, Frizziero L, Torresin T, et al. Optical coherence tomography and color fundus photography in the screening of age-related macular degeneration[J]. PLoS One, 2020, 15(8): 0237352.
[18]
Midena E, Frizziero L, Midena G, et al. Intraocular fluid biomarkers (liquid biopsy) in human diabetic retinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259(12): 3549-3560.
[19]
Lv B, Li S, Liu Y, et al. Development and Validation of an Explainable Artificial Intelligence Framework for Macular Disease Diagnosis Based on Optical Coherence Tomography Images[J]. Retina, 2022, 42(3): 456-464.
[20]
Chen X, Xue Y, Wu X, et al. Deep Learning-Based System for Disease Screening and Pathologic Region Detection From Optical Coherence Tomography Images[J]. Transl Vis Sci Technol, 2023, 12(1): 29.
[21]
Liu R, Li Q, Xu F, et al. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital[J]. Biomedical engineering online, 2022, 21(1): 47.
[22]
Wang M, Zhang X, Li D, et al. The potential of artificial intelligence reading label system on the training of ophthalmologists in retinal diseases[J]. BMC Med Educ, 2025, 25(1): 503.
[23]
Reiter GS, Mai J, Riedl S, et al. AI in the clinical management of GA: A novel therapeutic universe requires novel tools[J]. Prog Retin Eye Res, 2024, 103: 101305.
[24]
Mantel I, Lasagni Vitar RM, De Zanet S. Modeling pegcetacoplan treatment effect for atrophic age-related macular degeneration with AI-based progression prediction[J]. Int J Retina Vitreous, 2025, 11(1): 14.
[25]
Enzendorfer ML, Schmidt-Erfurth U. Artificial intelligence for geographic atrophy: pearls and pitfalls[J]. Curr Opin Ophthalmol, 2024, 35(6): 455-462.
[26]
Vairetti C, Maldonado S, Cuitino L, et al. Interpretable multimodal classification for age-related macular degeneration diagnosis[J]. PLoS One, 2024, 19(11): 0311811.
[27]
Gu C, Wang Y, Jiang Y, et al. Application of artificial intelligence system for screening multiple fundus diseases in Chinese primary healthcare settings[J]. Br J Ophthalmol, 2024, 108(3): 424-431.
[28]
Li B, Chen H, Zhang B, et al. Development and evaluation of a deep learning model for the detection of multiple fundus diseases based on colour fundus photography[J]. Br J Ophthalmol, 2022, 106(8): 1079-1086.
[29]
Cen LP, Ji J, Lin JW, et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks[J]. Nature communications, 2021, 12(1): 4828.
[30]
Banerjee R, Mujib R, Sanyal P, et al. Pan-Ret: a semi-supervised framework for scalable detection of pan-retinal diseases[J]. Med Biol Eng Comput, 2025, 63(4): 959-974.
[31]
Lin PK, Chiu YH, Huang CJ, et al. PADAr: physician-oriented artificial intelligence-facilitating diagnosis aid for retinal diseases[J]. J Med Imaging (Bellingham), 2022, 9(4): 044501.
[32]
Almotiri J, Elleithy K, Elleithy A. A Multi-Anatomical Retinal Structure Segmentation System for Automatic Eye Screening Using Morphological Adaptive Fuzzy Thresholding[J]. IEEE J Transl Eng Health Med, 2018, 6: 3800123.
[33]
Shen Z, Fu H, Shen J, et al. Modeling and Enhancing Low-Quality Retinal Fundus Images[J]. IEEE Trans Med Imaging, 2021, 40(3): 996-1006.
[34]
Zhang W, Zhao X, Chen Y, et al. DeepUWF: An Automated Ultra-Wide-Field Fundus Screening System via Deep Learning[J]. IEEE J Biomed Health Inform, 2021, 25(8): 2988-2996.
[35]
Liu Y, Xie H, Zhao X, et al. Automated detection of nine infantile fundus diseases and conditions in retinal images using a deep learning system[J]. EPMA J, 2024, 15(1): 39-51.
[36]
Mvoulana A, Kachouri R, Akil M. Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images[J]. Comput Med Imaging Graph, 2019, 77: 101643.
[37]
Maheshwari S, Kanhangad V, Pachori RB, et al. Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques[J]. Comput Biol Med, 2019, 105: 72-80.
[38]
Muramatsu C. Diagnosis of Glaucoma on Retinal Fundus Images Using Deep Learning: Detection of Nerve Fiber Layer Defect and Optic Disc Analysis[J]. Adv Exp Med Biol, 2020, 1213: 121-132.
[39]
Son J, Shin JY, Kong ST, et al. An interpretable and interactive deep learning algorithm for a clinically applicable retinal fundus diagnosis system by modelling finding-disease relationship[J]. Sci Rep, 2023, 13(1): 5934.
[40]
Gao M, Jiang H, Zhu L, et al. Discriminative ensemble meta-learning with co-regularization for rare fundus diseases diagnosis[J]. Medical image analysis, 2023, 89: 102884.
[41]
Tun YZ, Aimmanee P. A Complete Review of Automatic Detection, Segmentation, and Quantification of Neovascularization in Optical Coherence Tomography Angiography Images[J]. Diagnostics (Basel), 2023, 13(22): 3407.
[42]
Ardiyanto I, Nugroho HA, Buana RLB. Deep learning-based Diabetic Retinopathy assessment on embedded system. Conference proceedings[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2017, 2017: 1760-1763.
[43]
Kui X, Hai Z, Zou B, et al. DFC-Net: a dual-path frequency-domain cross-attention fusion network for retinal image quality assessment[J]. Biomedical optics express, 2024, 15(11): 6399-6415.
[44]
Wangweera C, Zanini P. Comparison review of image classification techniques for early diagnosis of diabetic retinopathy[J]. Biomed Phys Eng Express, 2024, 10(6): 10.
[45]
Wu X, Wu Y, Tu Z, et al. Cost-effectiveness and cost-utility of a digital technology-driven hierarchical healthcare screening pattern in China[J]. Nat Commun, 2024, 15(1): 3650.
[46]
Betzler BK, Rim TH, Sabanayagam C, et al. Artificial Intelligence in Predicting Systemic Parameters and Diseases From Ophthalmic Imaging[J]. Front Digit Health, 2022, 4: 889445.
[47]
Jiang X, Xie M, Ma L, et al. International publication trends in the application of artificial intelligence in ophthalmology research: an updated bibliometric analysis[J]. Ann Transl Med, 2023, 11(5): 219.
[48]
Tan YY, Kang HG, Lee CJ, et al. Correction: Prognostic potentials of AI in ophthalmology: systemic disease forecasting via retinal imaging[J]. Eye Vis (Lond), 2024, 11(1): 33.
[49]
Wei Q, Chi L, Li M, et al. Practical Applications of Artificial Intelligence Diagnostic Systems in Fundus Retinal Disease Screening[J]. Int J Gen Med, 2025, 18: 1173-1180.
[50]
Muqri H, Shrivastava A, Muhtadi R, et al. The Cost-Effectiveness of a Telemedicine Screening Program for Diabetic Retinopathy in New York City[J]. Clin Ophthalmol, 2022, 16: 1505-1512.
[51]
Weinreb RN, Lee AY, Baxter SL, et al. Application of Artificial Intelligence to Deliver Healthcare From the Eye[J]. JAMA Ophthalmol, 2025, 143(6): 529-535.
[52]
Vought R, Vought V, Szirth B, et al. Future direction for the deployment of deep learning artificial intelligence[J]. Saudi J Ophthalmol, 2023, 37(3): 193-199.
[1] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[2] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[3] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[4] 郭瑞铭, 邱伟, 房付春. 单细胞RNA测序技术的发展及其在牙周炎研究中的应用与展望[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(02): 75-83.
[5] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[6] 黄世旺, 郄云凯, 胡海龙. 人工智能时代尿液无创检测方法在膀胱癌诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 283-287.
[7] 詹彧鸣, 张翔, 翁山耕. 人工智能在腹膜后肿瘤精准诊疗中的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 371-376.
[8] 张艳云, 白起之, 张健伟, 郭大志, 马丹, 龚明福. 基于AI 的CT 定量用于肺结节性质及浸润程度的影像学分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 411-415.
[9] 希龙夫, 薛荣泉. 人工智能在肝胆胰肿瘤诊治中应用与进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 166-171.
[10] 赵婷, 易晓芳. 人工智能在子宫腺肌病微创治疗中的应用进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 172-176.
[11] 施薇薇, 楼微华, 狄文, 严斌, 张楠, 王酉. 人工智能驱动的腔镜外科发展:研究进展与未来趋势[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 177-183.
[12] 郭寒川, 王乾宇, 吴斌. 人工智能在神经识别的研究进展及直肠癌自主神经保护的应用[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 273-276.
[13] 卓莉. 人工智能和多组学:肾脏病诊疗的新方向[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 180-180.
[14] 王玲洁, 王瑷萍, 李朝军, 丁跃有, 杨德业, 赵清, 崔兆强, 王京昆, 王宏宇. 心脏和血管健康技术创新研发策略专家共识(2024第一次报告,上海)[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 323-336.
[15] 马也, 瞿航, 王苇. 人工智能在脑血管病影像评价中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 211-215.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?