切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2024, Vol. 14 ›› Issue (03) : 160 -166. doi: 10.3877/cma.j.issn.2095-2007.2024.03.006

病例报告

溶质转运体4A4基因突变致近端肾小管酸中毒合并儿童青光眼1例
张莉1,(), 左晓玲2, 王宁利1   
  1. 1. 100730 首都医科大学附属北京同仁医院北京同仁眼科中心 北京市眼科研究所 眼科学与视觉科学北京市重点实验室
    2. 054099 河北省邢台市中心医院外科
  • 收稿日期:2024-04-03 出版日期:2024-06-28
  • 通信作者: 张莉
  • 基金资助:
    国家自然科学基金重点项目(82130029)

One case of proximal tubular acidosis combined with glaucoma in children caused by solute transporter 4A4 gene mutation

Li Zhang(), Xiaoling Zuo, Ningli Wang   

  • Received:2024-04-03 Published:2024-06-28
  • Corresponding author: Li Zhang
引用本文:

张莉, 左晓玲, 王宁利. 溶质转运体4A4基因突变致近端肾小管酸中毒合并儿童青光眼1例[J]. 中华眼科医学杂志(电子版), 2024, 14(03): 160-166.

Li Zhang, Xiaoling Zuo, Ningli Wang. One case of proximal tubular acidosis combined with glaucoma in children caused by solute transporter 4A4 gene mutation[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(03): 160-166.

患儿,女性,5岁。2019年7月10日因双眼球逐渐变大且视力不佳于首都医科大学附属北京同仁医院眼科就诊。家属主诉患儿于2年前在当地医院眼科会诊时发现双眼不能追光,视力检查无法配合,双眼眼压43 mmHg(1 mmHg=0.133 kPa),双眼球增大,大角膜,角膜混浊,前房深,晶体轻度混浊,眼底视盘杯盘比0.8,视乳头苍白。患儿出生后身体发育落后,生长迟缓,语言和智力发育迟缓。患儿3岁时因食欲差和腹泻住院治疗,住院期间发生癫痫,伴高热惊厥,共济失调,肌张力高,颈部僵硬,代谢性脑病发作。现经眼部检查,发现右眼眼压54 mmHg,左眼眼压45 mmHg,视力检查配合不佳,双眼不能追光注视。双眼球扩大,角膜水平直径13 mm,角膜半透明状灰白混浊。见图1A和图1B。前房深,晶状体灰白混浊。眼底照相显示视杯呈同心圆状增大,杯盘比为0.9,视盘盘沿4个象限弥漫性丢失,盘沿变窄,视网膜神经纤维层弥漫性缺损。见图1C和图1D。右眼眼轴26.5 mm,左眼眼轴25.3 mm。患儿身材矮小,身高89 cm,体质量13 kg较轻,身体虚弱,不能单独站立和行走。经血气检查,提示低钾高氯血症,血清碳酸氢盐水平降低和二氧化碳分压水平持续低。血清肌酐水平为71 μmol/L,略高;尿液pH值为5.5。肾功能异常,尿液pH值降低。影像学检查提示肾脏大小正常,心脏卵圆孔未闭,心律失常,二度房室传导阻滞(Ⅰ型),双侧基底节对称钙化。临床诊断为肾小管性酸中毒(renal tubular acidosis,RTA),高氯性酸中毒,代谢性脑病,儿童青光眼,先天性白内障,角膜变性。疑似遗传性疾病,故对患儿及其父母进行遗传病外显子组基因测序,结果显示溶质转运体(solute carriers,SLC)4A4基因检测到两个杂合病理性变异。该患儿SLC4A4基因有两个突变。其一,是外显子Exon 1中的c.145C>T,p(Arg49*),4q13 NM_003759.3,该变异为无义突变,读码框第49位密码子由编码Arg变异为终止信号,引起基因表达产物被截短,目前该变异尚未被人类基因突变数据库收录,其频率为零。该变异分类为病理性变异。为明确c.145C>T(p.Arg49*)变异来源,对患儿及其父母进行Sanger测序,结果显示该突变遗传来自其父亲。其二,是内含子Intron 10中的c.1499+1G>A,p.未知,4q13 NM_003759.3,该变异发生在关键的剪接信号处,可严重紊乱基因表达产物。经基于密度干扰信息空间聚类生物信息学分析(v11),结果显示该变异可引起剪接位点改变,目前该变异尚未被人类基因突变数据库收录,其频率为零。该变异分类为病理性变异。Sanger测序表明此突变遗传来自其母亲。此外,SLC4A4基因有两个杂合病理性的变异。SLC4A4基因与伴眼疾的近端RTA(MIM604278)(proximal renal tubular acidosis,pRTA)相关,遗传方式为常染色体隐性遗传。排除先天性青光眼遗传病的诊断。结合患儿临床表现、实验室检查及基因检测结果,修正诊断为遗传性pRTA,伴继发性儿童青光眼、白内障、角膜变性及SLC4A4基因突变型。经专家组讨论,给予患儿苯妥英钠(江苏悦兴药业有限公司生产),2.5 mg/kg,2次/d;氯噻嗪(山东信谊制药有限公司生产),口服,1 mg/kg,2次/d;碳酸氢钠(福州海王福药制药有限公司生产),口服,0.2 g/d,3次/d;枸橼酸钾(陕西恒玖源健康药业有限公司生产),口服,1 mEq/kg,2次/d,限钙饮食;使用拉坦前列腺素滴眼液(比利时辉瑞制药公司生产)、β受体阻滞剂卡替洛尔滴眼液(中国大冢制药有限公司生产)及碳酸酐酶抑制剂布林佐胺滴眼液(美国爱尔康医药公司生产)的局部降眼压药物治疗,乙酰唑胺(上海信谊药厂有限公司生产)使用3 d;患儿时有癫痫发作,家属拒绝手术治疗,坚持药物控制眼压。患儿于2022年9月25日复查,右眼眼压18 mmHg,左眼眼压20 mmHg,眼底照相显示双眼视盘盘沿上下方及鼻颞侧略呈同心圆样扩大。见图1E和图1F。

图1 遗传性近端肾小管酸中毒患儿于初次就诊和1年后复查时的眼部表现 图A和图B分别示裂隙灯显微镜下右眼和左眼眼前节彩色照相(×10),可见角膜半透明状灰白混浊,晶状体混浊;图C和图D分别示初次就诊时右眼左眼眼底照相(×10),可见眼底因角膜和晶状体混浊而略显模糊,视盘色苍白,盘沿弥漫性变窄,视网膜神经纤维层弥漫性缺损;图E和图F分别示1年后随诊时右眼左眼眼底照相,与初诊时比双眼视盘盘沿上下方及鼻颞侧略呈同心圆样扩大
表1 青光眼合并非获得性全身疾病或综合征的临床特征汇总表
综合征 临床特征 基因
Nail-patella综合征* 指甲发育不良,髌骨缺如或发育不良,肾脏异常和青光眼。Lester征,中央虹膜旁三叶草样黑色素沉着 LMX1B(LIM-homeodomain transcription factor)
神经纤维瘤病Ⅰ型* 神经鞘肿瘤,Lisch结节,眼睑丛状神经纤维瘤,蝶骨嵴发育不良,视神经胶质瘤,青光眼 NF1 (neurofibromin)
近端肾小管酸中毒伴眼部异常,智力低下# 近端肾小管酸中毒,生长迟缓,智力低下,眼球震颤,白内障,角膜混浊,青光眼 SLC4A4(solute carriers 4A4)
Marfan综合征* 体型瘦高,指趾细长,前胸异常,晶状体脱位,青光眼,主动脉根部扩张 FBN1(fibrillin-1)
眼齿指发育不良* 典型面容,牙齿、指及眼部受累,小眼球,小角膜,青光眼 connexin-43
Frank-terHaar综合征# 短头,宽囟,前额突出,两眼间距过远,突眼,大角膜,青光眼 TKS4 (tyrosine kinase substrate with four Src homology 3 domains)
Rubinstein-Taybi综合征# 智力发育迟缓,生长迟缓,小头畸形,拇指宽大,面部外观异常,屈光不正,斜视,青光眼,白内障 CREBBP(cAMP-response element binding protein-BP)
Ehlers-Danlos Ⅳ型 出生时肌张力严重减退,全身关节松弛,脊柱侧凸,巩膜脆性增加,青光眼 PLOD1( procollagen-lysine,2-oxoglutarate 5-dioxygenase 1)
Peters plus综合征# 智力发育迟缓,生长迟缓,身材矮小,耳异常,Peters异常,青光眼 B3GALTL(beta-1,3-galactosyltransferase-like glycosyltransferase)
Zellveger(过氧化物酶体生物合成障碍1a)# 神经系统严重功能障碍,颅面异常,肝功能异常,过氧化物酶体功能障碍,角膜混浊,白内障,视网膜色素紊乱,青光眼,眼球震颤 Peroxin
Klippel-Trenaunay-Weber综合征 大面积皮肤血管瘤,骨与软组织肥大,类似Sturge-Weber临床表现,青光眼 尚无定论
Charcot-Marie-Tooth病4B2型# 运动和感觉神经遗传性脱髓鞘疾病,髓鞘异常折叠 SBF2 (SET-Binding Factor 2)
Walker Warburg综合征# 先天性肌营养不良,脑部和眼部异常,青光眼 POMT1 (protein O-mannosyltransferase 1)和ISPD ( isoprenoid synthase domain-containing )
小眼球-皮肤发育不良-巩膜化角膜综合征& 单侧或双侧小眼球,头颈部线状皮肤缺损,青光眼 HCCS (holocytochrome c-type synthetase)
[1]
Myers EJ, Yuan L, Felmlee MA, et al. A novel mutant Na /HCO3 cotransporter NBCe1 in a case of compound-heterozygous inheritance of proximal renal tubular acidosis[J]. J Physiol, 2016, 594(21): 6267-6286.
[2]
Horita S, Yamada H, Inatomi J, et al. Functional analysis of NBC1 mutants associated with proximal renal tubular acidosis and ocular abnormalities[J]. J Am Soc Nephrol, 2005, 16(8): 2270-2278.
[3]
Demirci FY, Chang MH, Mah TS, et al. Proximal renal tubular acidosis and ocular pathology: a novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1) [J]. Mol Vis, 2006, 12(4): 324-330.
[4]
Alexander RT, Bitzan M. Renal tubular acidosis[J]. Pediatr Clin North Am, 2019, 66(1): 135-157.
[5]
Choi I, Soo Yang H, Boron WF. The electrogenicity of the rat sodium-bicarbonate cotransporter NBCe1 requires interactions among transmembrane segments of the transporter[J]. J Physiol, 2007, 578(Pt 1): 131-142.
[6]
Giglio S, Montini G, Trepiccione F, et al. Distal renal tubular acidosis: a systematic approach from diagnosis to treatment[J]. J Nephrol, 2021, 34(6): 2073-2083.
[7]
Usui T, Hara M, Satoh H, et al. Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis[J]. J Clin Invest, 2001, 108(1): 107-115.
[8]
Lo YF, Yang SS, Seki G, et al. Severe metabolic acidosis causes early lethality in NBC1 W516X knock-in mice as a model of human isolated proximal renal tubular acidosis[J]. Kidney Int, 2011, 79(7): 730-741.
[9]
Shine L, Kilty C, Gross J, et al. Vacuolar ATPases and their role in vision[J]. Adv Exp Med Biol, 2014, 801(1): 97-103.
[10]
Dinour D, Chang MH, Satoh J, et al. A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects[J]. J Biol Chem, 2004, 279(50): 52238-52246.
[11]
Parker MD, Qin X, Williamson RC, et al. HCO3-independent conductance with a mutant Na/HCO3 cotransporter (SLC4A4) in a case of proximal renal tubular acidosis with hypokalaemic paralysis[J]. J Physiol, 2012, 590(8): 2009-2034.
[12]
Gurnett CA, Veile R, Zempel J, et al. Disruption of sodium bicarbonate transporter SLC4A10 in a patient with complex partial epilepsy and mental retardation[J]. Arch Neurol, 2008, 65(4): 550-553.
[13]
Salerno EE, Patel SP, Marshall A, et al. Extrarenal signs of proximal renal tubular acidosis persist in nonacidemic Nbce1b/c-null mice[J]. J Am Soc Nephrol, 2019, 30(6): 979-989.
[14]
Gil-Perotín S, Jaijo T, Verdú AG,et al. Epilepsy, status epilepticus, and hemiplegic migraine coexisting with a novel SLC4A4 mutation[J]. Neurol Sci, 2021, 42(9): 3647-3654.
[15]
Boron WF. Acid-base transport by the renal proximal tubule[J]. J Am Soc Nephrol, 2006, 17(9): 2368-2382.
[16]
Seki G, Horita S, Suzuki M, et al. Molecular mechanisms of renal and extrarenal manifestations caused by inactivation of the electrogenic Na-HCO3cotransporter NBCe1[J]. Front Physiol, 2013, 4(10): 270.
[17]
Gill HS, Choi KY, Kammili L, et al. Rescue of the temperature-sensitive, autosomal-recessive mutation R298S in the sodium-bicarbonate cotransporter NBCe1-A characterized by a weakened dimer and abnormal aggregation[J]. Biochim Biophys Acta, 2015, 1850(6): 1286-1296.
[18]
Watanabe T. Improving outcomes for patients with distal renal tubular acidosis: recent advances and challenges ahead[J]. Pediatric Health Med Ther, 2018, 9(12): 181-190.
[19]
Fry AC, Karet FE. Inherited renal acidoses[J]. Physiology (Bethesda), 2007, 22(6): 202-211.
[20]
Mohebbi N, Wagner CA. Pathophysiology, diagnosis and treatment of inherited distal renal tubular acidosis[J]. J Nephrol, 2018, 31(4): 511-522.
[21]
Besouw MTP, Bienias M, Walsh P, et al. Clinical and molecular aspects of distal renal tubular acidosis in children[J]. Pediatr Nephrol, 2017, 32(6): 987-996.
[22]
Palazzo V, Provenzano A, Becherucci F, et al. The genetic and clinical spectrum of a large cohort of patients with distal renal tubular acidosis[J]. Kidney Int, 2017, 91(5): 1243-1255.
[23]
Gil-Peña H, Mejía N, Santos F. Renal tubular acidosis[J]. J Pediatr, 2014, 164(4): 691-698.
[24]
Fuster DG, Moe OW. Incomplete distal renal tubular acidosis and kidney stones[J]. Adv Chronic Kidney Dis, 2018, 25(4): 366-374.
[25]
Soleimani M, Rastegar A. Pathophysiology of renal tubular acidosis: core curriculum 2016[J]. Am J Kidney Dis, 2016, 68(3): 488-498.
[26]
Suzuki M, Vaisbich MH, Yamada H, et al. Functional analysis of a novel missense NBC1 mutation and of other mutations causing proximal renal tubular acidosis[J]. Pflugers Arch, 2008, 455(4): 583-593.
[27]
Palmer BF, Kelepouris E, Clegg DJ. Renal tubular acidosis and management strategies: a narrative review[J]. Adv Ther, 2021, 38(2): 949-968.
[28]
Sacré A, Jouret F, Manicourt D, et al. Topiramate induces type 3 renal tubular acidosis by inhibiting renal carbonic anhydrase[J]. Nephrol Dial Transplant, 2006, 21: 2995-2996.
[29]
Karet FE. Mechanisms in hyperkalemic renal tubular acidosis[J]. J Am Soc Nephrol, 2009, 20(3): 251-254.
[30]
Batlle D, Arruda J. Hyperkalemic forms of renal tubular acidosis: clinical and pathophysiological aspects[J]. Adv Chronic Kidney Dis, 2018, 25(3): 321-333.
[31]
Lin W, Mou L, Tu H, et al. Clinical analysis of hyperkalemic renal tubular acidosis caused by calcineurin inhibitors in solid organ transplant recipients[J]. J Clin Pharm Ther, 2017, 42(2): 122-124.
[32]
Riveiro-Barciela M, Campos-Varela I, Tovar JL, et al. Hyperkalemic distal renal tubular acidosis caused by immunosuppressant treatment with tacrolimus in a liver transplant patient: case report[J]. Transplant Proc, 2011, 43: 4016-4018.
[33]
Schmoyer C, Mishra S, Fulco F. Tacrolimus-induced type Ⅳ renal tubular acidosis following liver transplantation[J]. Case Rep Hepatol, 2017: 9312481.
[34]
Santos F, Ordonez FA, Claramunt-Taberner D, et al. Clinical and laboratory approaches in the diagnosis of renal tubular acidosis[J]. Pediatr Nephrol, 2015, 30: 2099-2107.
[35]
Palmer BF, Clegg DJ. Hyperchloremic normal gap metabolic acidosis[J]. Minerva Endocrinol, 2019, 44 (2): 363-377.
[36]
Suzuki M, Van Paesschen W, Stalmans I, et al. Defective membrane expression of the Na-HCO3cotransporter NBCe1 is associated with familial migraine[J]. Proc Natl Acad Sci U S A, 2010, 7(36): 15963-15968.
[37]
Wagner CA, Imenez Silva PH, Bourgeois S. Molecular pathophysiology of acid-base disorders[J]. Semin Nephrol, 2019, 39(4): 340-352.
[38]
Demirci FY, Chang MH, Mah TS, et al. Proximal renal tubular acidosis and ocular pathology: a novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1) [J]. Mol Vis, 2006, 12(4): 324-330.
[39]
Du L, Zahra A, Jia M, et al. Understanding the functional expression of Na-coupled SLC4 transporters in the renal and nervous systems: a review[J]. Brain Sci, 2021, 11(10): 1276.
[40]
Suzuki M, Seki G, Yamada H, et al. Functional roles of electrogenic sodium bicarbonate cotransporter NBCe1 in ocular tissues[J]. Open Ophthalmol J, 2012, 6(1): 36-41.
[41]
Bok D, Schibler MJ, Pushkin A, et al. Immunolocalization of electrogenic sodium-bicarbonate cotransporters pNBC1 and kNBC1 in the rat eye[J]. Am J Physiol Renal Physiol, 2001, 281(5): F920-935.
[42]
Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies[J]. Nephrol Dial Transplant, 2012, 27(12): 4273-4287.
[43]
Zhekova HR, Pushkin A, Kayık G, et al. Identification of multiple substrate binding sites in SLC4 transporters in the outward-facing conformation: Insights into the transport mechanism[J]. J Biol Chem, 2021, 296: 100724.
[44]
Sweeney E, Fryer A, Mountford R, et al. Nail patella syndrome: a review of the phenotype aided by developmental biology[J]. J Med Genet, 200, 40(3): 153-162.
[45]
Gabriel LA, Sachdeva R, Marcotty A, et al. Oculodentodigital dysplasia: new ocular findings and a novel connexin 43 mutation[J]. Arch Ophthalmol, 2011, 129(6): 781-784.
[46]
Paznekas WA, Boyadjiev SA, Shapiro RE, et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia[J]. Am J Hum Genet, 2003, 72(2): 408-418.
[47]
Maas SM, Kayserili H, Lam J, et al. Further delineation of Frank-ter Haar syndrome[J]. Am J Med Genet A, 2004131(2): 127-133.
[48]
Iqbal Z, Cejudo-Martin P, de Brouwer A, et al. Disruption of the podosome adaptor protein TKS4 (SH3PXD2B) causes the skeletal dysplasia, eye, and cardiac abnormalities of Frank-Ter Haar Syndrome[J]. Am J Hum Genet, 2010, 86(2): 254-261.
[49]
Stevens CA, Pouncey J, Knowles D. Adults with Rubinstein-Taybi syndrome[J]. Am J Med Genet A, 2011, 155A(7): 1680-1684.
[50]
Petrij F, Giles RH, Dauwerse HG, et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP[J]. Nature, 1995, 376(6538): 348-351.
[51]
Schorry EK, Keddache M, Lanphear N, et al. Genotype-phenotype correlations in Rubinstein-Taybi syndrome[J]. Am J Med Genet A, 2008, 146A(19): 2512-2519.
[52]
Kissil JL, Blakeley JO, Ferner RE, et al. What′ s new in neurofibromatosis? Proceedings from the 2009 NF Conference: new frontiers[J]. Am J Med Genet A, 2010, 152A(2): 269-283.
[53]
Maillette-de-Buy-Wenniger-Prick LJ, Hennekam RC. The Peters′ plus syndrome: a review[J]. Ann Genet, 2002, 45(2): 97-103.
[54]
Wanders RJ. Metabolic and molecular basis of peroxisomal disorders: a review[J]. Am J Med Genet A, 2004, 126A(4): 355-375.
[55]
Ebberink MS, Mooijer PA, Gootjes J, et al. Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder[J]. Hum Mutat, 2011, 32(1): 59-69.
[56]
Oduber CE, van-der-Horst CM, Hennekam RC. Klippel-Trenaunay syndrome: diagnostic criteria and hypothesis on etiology[J]. Ann Plast Surg, 2008, 60(2): 217-223.
[57]
Kiwaki T, Umehara F, Takashima H, et al. Hereditary motor and sensory neuropathy with myelin folding and juvenile onset glaucoma[J]. Neurology, 2000, 55(3): 392-397.
[58]
Azzedine H, Bolino A, Taïeb T, et al. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma[J]. Am J Hum Genet, 2003, 72(5): 1141-1153.
[59]
Currier SC, Lee CK, Chang BS, et al. Mutations in POMT1 are found in a minority of patients with Walker-Warburg syndrome[J]. Am J Med Genet A, 2005133(1): 53-57.
[60]
Roscioli T, Kamsteeg EJ, Buysse K, et al. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan[J]. Nat Genet, 2012, 44(5): 581-585.
[61]
Morleo M, Pramparo T, Perone L, et al. Microphthalmia with linear skin defects (MLS) syndrome: clinical, cytogenetic, and molecular characterization of 11 cases[J]. Am J Med Genet A, 2005, 137(2): 190-198.
[62]
Wimplinger I, Morleo M, Rosenberger G, et al. Mutations of the mitochondrial holocytochrome c-type synthase in X-linked dominant microphthalmia with linear skin defects syndrome[J]. Am J Hum Genet, 2006, 79(5): 878-889.
[63]
Igarashi T, Inatomi J, Sekine T, et al. Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities[J]. Nat Genet, 1999, 23(3): 264-266.
[64]
Cook E, Davis J, Israni R, et al. Prevalence of metabolic acidosis among patients with CKD and hyperkalemia[J]. Am J Kidney Dis, 2020, 75(6): 561-562.
[65]
Guo W, Ji P, Xie Y. Genetic diagnosis and treatment of inherited renal tubular acidosis[J]. Kidney Dis, 2023, 9(5): 371-383.
[66]
Karatzas A, Paridis D, Kozyrakis D, et al. Fanconi syndrome in the adulthood. The role of early diagnosis and treatment[J]. J Musculoskelet Neuronal Interact, 201717(3): 303-306.
[67]
Dobbin SJH, Petrie JR, Lean MEJ, et al. Fludrocortisone therapy for persistent hyperkalaemia[J]. Diabet Med, 2017, 34(8): 1005-1008.
[68]
Quaranta L, Biagioli E, Riva I, et al. The Glaucoma Italian Pediatric Study (GIPSy): 1-year results[J]. J Glaucoma, 2017, 26(11): 987-994.
[69]
Enyedi LB, Freedman SF. Latanoprost for the treatment of pediatric glaucoma[J]. Surv Ophthalmol, 2002, 47(8): S129-S132.
[70]
Dixon ER, Landry T, Venkataraman S, et al. A 3-month safety and efficacy study of travoprost 0.004% ophthalmic solution compared with timolol in pediatric patients with glaucoma or ocular hypertension[J]. J AAPOS, 2017, 21(5): 370-374.
[71]
Al-Shahwan S, Al-Torbak AA, Turkmani S, et al. Side-effect profile of brimonidine tartrate in children[J]. Ophthalmology, 2005112(12): 2143.
[72]
Sit AJ, Gupta D, Kazemi A, et al. Netarsudil improves trabecular outflow facility in patients with primary open angle glaucoma or ocular Hypertension: A Phase 2 Study[J]. Am J Ophthalmol, 2021, 226(6): 262-269.
[73]
Sacchi M, Lizzio RAU, Villani E, et al. Medical management of pediatric glaucoma: lessons learned from randomized clinical trials[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(8): 1579-1586.
[74]
Al-Dawood A, Ahmad K, Al-Salman S, et al. Barriers and adherence to glaucoma medication in a paediatric glaucoma population: A cross-sectional survey in central Saudi Arabia[J]. Eur J Ophthalmol, 2022, 32(6): 3451-3460.
[75]
Qiao Y, Tan C, Chen X, et al. Gonioscopy-assisted transluminal trabeculotomy versus goniotomy with Kahook dual blade in patients with uncontrolled juvenile open-angle glaucoma: a retrospective study[J]. BMC Ophthalmol, 2021, 21(1): 395.
[76]
Jacobson A, Bohnsack BL. Ologen augmentation of Ahmed valves in pediatric glaucomas[J]. J AAPOS, 2022, 26(3): 122.e1-122.e6.
[77]
Kaushik S, Kataria P, Raj S, et al. Safety and efficacy of a low-cost glaucoma drainage device for refractory childhood glaucoma[J]. Br J Ophthalmol, 2017, 101(12): 1623-1627.
[78]
Shen LL, Guo X, Johnson TV, et al. Comparing Ahmed-FP7 to Baerveldt-250 and Baerveldt-350 surgical outcomes: 1-year results from a retrospective cohort study leveraging the electronic health record[J]. BMJ Open Ophthalmol, 2023, 8(1): e001308.
[79]
Gedde SJ, Singh K, Schiffman JC, et al. Tube Versus Trabeculectomy Study Group. The Tube Versus Trabeculectomy Study: interpretation of results and application to clinical practice[J]. Curr Opin Ophthalmol, 2012, 23(2): 118-126.
[80]
Jacobson A, Besirli CG, Bohnsack BL. Outcomes of combined endoscopic vitrectomy and posteriorly placed glaucoma drainage devices in pediatric patients[J]. BMC Ophthalmol, 2022, 22(1): 149.
[81]
Traverso CE, Carassa RG, Fea AM, et al. Effectiveness and safety of Xen gel stent in glaucoma surgery: A systematic review of the literature[J]. J Clin Med, 2023, 12(16): 5339.
[82]
Al-Owaifeer AM, Almutairi AT, Schargel K. The outcomes of trans-scleral cyclophotocoagulation in pediatric glaucoma secondary to Sturge-Weber syndrome[J]. J AAPOS, 2022, 26(2): 78.e1-78.e5.
[83]
FießA, Shah P, Sii F, et al. Trabeculectomy or transscleral cyclophotocoagulation as initial treatment of secondary childhood glaucoma in northern Tanzania[J]. J Glaucoma, 2017, 26(7): 657-660.
[84]
Abdelrahman AM, El Sayed YM. Micropulse versus continuous wave transscleral cyclophotocoagulation in refractory pediatric glaucoma[J]. J Glaucoma, 2018, 27(10): 900-905.
[85]
Shen R, Li VSW, Wong MOM, et al. Pediatric glaucoma-from screening, early detection to management[J]. Children, 202310(2): 181.
No related articles found!
阅读次数
全文


摘要