[1] |
Myers EJ, Yuan L, Felmlee MA, et al. A novel mutant Na+ /HCO3- cotransporter NBCe1 in a case of compound-heterozygous inheritance of proximal renal tubular acidosis[J]. J Physiol, 2016, 594(21): 6267-6286.
|
[2] |
Horita S, Yamada H, Inatomi J, et al. Functional analysis of NBC1 mutants associated with proximal renal tubular acidosis and ocular abnormalities[J]. J Am Soc Nephrol, 2005, 16(8): 2270-2278.
|
[3] |
Demirci FY, Chang MH, Mah TS, et al. Proximal renal tubular acidosis and ocular pathology: a novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1) [J]. Mol Vis, 2006, 12(4): 324-330.
|
[4] |
Alexander RT, Bitzan M. Renal tubular acidosis[J]. Pediatr Clin North Am, 2019, 66(1): 135-157.
|
[5] |
Choi I, Soo Yang H, Boron WF. The electrogenicity of the rat sodium-bicarbonate cotransporter NBCe1 requires interactions among transmembrane segments of the transporter[J]. J Physiol, 2007, 578(Pt 1): 131-142.
|
[6] |
Giglio S, Montini G, Trepiccione F, et al. Distal renal tubular acidosis: a systematic approach from diagnosis to treatment[J]. J Nephrol, 2021, 34(6): 2073-2083.
|
[7] |
Usui T, Hara M, Satoh H, et al. Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis[J]. J Clin Invest, 2001, 108(1): 107-115.
|
[8] |
Lo YF, Yang SS, Seki G, et al. Severe metabolic acidosis causes early lethality in NBC1 W516X knock-in mice as a model of human isolated proximal renal tubular acidosis[J]. Kidney Int, 2011, 79(7): 730-741.
|
[9] |
Shine L, Kilty C, Gross J, et al. Vacuolar ATPases and their role in vision[J]. Adv Exp Med Biol, 2014, 801(1): 97-103.
|
[10] |
Dinour D, Chang MH, Satoh J, et al. A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects[J]. J Biol Chem, 2004, 279(50): 52238-52246.
|
[11] |
Parker MD, Qin X, Williamson RC, et al. HCO3--independent conductance with a mutant Na+/HCO3- cotransporter (SLC4A4) in a case of proximal renal tubular acidosis with hypokalaemic paralysis[J]. J Physiol, 2012, 590(8): 2009-2034.
|
[12] |
Gurnett CA, Veile R, Zempel J, et al. Disruption of sodium bicarbonate transporter SLC4A10 in a patient with complex partial epilepsy and mental retardation[J]. Arch Neurol, 2008, 65(4): 550-553.
|
[13] |
Salerno EE, Patel SP, Marshall A, et al. Extrarenal signs of proximal renal tubular acidosis persist in nonacidemic Nbce1b/c-null mice[J]. J Am Soc Nephrol, 2019, 30(6): 979-989.
|
[14] |
Gil-Perotín S, Jaijo T, Verdú AG,et al. Epilepsy, status epilepticus, and hemiplegic migraine coexisting with a novel SLC4A4 mutation[J]. Neurol Sci, 2021, 42(9): 3647-3654.
|
[15] |
Boron WF. Acid-base transport by the renal proximal tubule[J]. J Am Soc Nephrol, 2006, 17(9): 2368-2382.
|
[16] |
Seki G, Horita S, Suzuki M, et al. Molecular mechanisms of renal and extrarenal manifestations caused by inactivation of the electrogenic Na+-HCO3-cotransporter NBCe1[J]. Front Physiol, 2013, 4(10): 270.
|
[17] |
Gill HS, Choi KY, Kammili L, et al. Rescue of the temperature-sensitive, autosomal-recessive mutation R298S in the sodium-bicarbonate cotransporter NBCe1-A characterized by a weakened dimer and abnormal aggregation[J]. Biochim Biophys Acta, 2015, 1850(6): 1286-1296.
|
[18] |
Watanabe T. Improving outcomes for patients with distal renal tubular acidosis: recent advances and challenges ahead[J]. Pediatric Health Med Ther, 2018, 9(12): 181-190.
|
[19] |
Fry AC, Karet FE. Inherited renal acidoses[J]. Physiology (Bethesda), 2007, 22(6): 202-211.
|
[20] |
Mohebbi N, Wagner CA. Pathophysiology, diagnosis and treatment of inherited distal renal tubular acidosis[J]. J Nephrol, 2018, 31(4): 511-522.
|
[21] |
Besouw MTP, Bienias M, Walsh P, et al. Clinical and molecular aspects of distal renal tubular acidosis in children[J]. Pediatr Nephrol, 2017, 32(6): 987-996.
|
[22] |
Palazzo V, Provenzano A, Becherucci F, et al. The genetic and clinical spectrum of a large cohort of patients with distal renal tubular acidosis[J]. Kidney Int, 2017, 91(5): 1243-1255.
|
[23] |
Gil-Peña H, Mejía N, Santos F. Renal tubular acidosis[J]. J Pediatr, 2014, 164(4): 691-698.
|
[24] |
Fuster DG, Moe OW. Incomplete distal renal tubular acidosis and kidney stones[J]. Adv Chronic Kidney Dis, 2018, 25(4): 366-374.
|
[25] |
Soleimani M, Rastegar A. Pathophysiology of renal tubular acidosis: core curriculum 2016[J]. Am J Kidney Dis, 2016, 68(3): 488-498.
|
[26] |
Suzuki M, Vaisbich MH, Yamada H, et al. Functional analysis of a novel missense NBC1 mutation and of other mutations causing proximal renal tubular acidosis[J]. Pflugers Arch, 2008, 455(4): 583-593.
|
[27] |
Palmer BF, Kelepouris E, Clegg DJ. Renal tubular acidosis and management strategies: a narrative review[J]. Adv Ther, 2021, 38(2): 949-968.
|
[28] |
Sacré A, Jouret F, Manicourt D, et al. Topiramate induces type 3 renal tubular acidosis by inhibiting renal carbonic anhydrase[J]. Nephrol Dial Transplant, 2006, 21: 2995-2996.
|
[29] |
Karet FE. Mechanisms in hyperkalemic renal tubular acidosis[J]. J Am Soc Nephrol, 2009, 20(3): 251-254.
|
[30] |
Batlle D, Arruda J. Hyperkalemic forms of renal tubular acidosis: clinical and pathophysiological aspects[J]. Adv Chronic Kidney Dis, 2018, 25(3): 321-333.
|
[31] |
Lin W, Mou L, Tu H, et al. Clinical analysis of hyperkalemic renal tubular acidosis caused by calcineurin inhibitors in solid organ transplant recipients[J]. J Clin Pharm Ther, 2017, 42(2): 122-124.
|
[32] |
Riveiro-Barciela M, Campos-Varela I, Tovar JL, et al. Hyperkalemic distal renal tubular acidosis caused by immunosuppressant treatment with tacrolimus in a liver transplant patient: case report[J]. Transplant Proc, 2011, 43: 4016-4018.
|
[33] |
Schmoyer C, Mishra S, Fulco F. Tacrolimus-induced type Ⅳ renal tubular acidosis following liver transplantation[J]. Case Rep Hepatol, 2017: 9312481.
|
[34] |
Santos F, Ordonez FA, Claramunt-Taberner D, et al. Clinical and laboratory approaches in the diagnosis of renal tubular acidosis[J]. Pediatr Nephrol, 2015, 30: 2099-2107.
|
[35] |
Palmer BF, Clegg DJ. Hyperchloremic normal gap metabolic acidosis[J]. Minerva Endocrinol, 2019, 44 (2): 363-377.
|
[36] |
Suzuki M, Van Paesschen W, Stalmans I, et al. Defective membrane expression of the Na+-HCO3-cotransporter NBCe1 is associated with familial migraine[J]. Proc Natl Acad Sci U S A, 2010, 7(36): 15963-15968.
|
[37] |
Wagner CA, Imenez Silva PH, Bourgeois S. Molecular pathophysiology of acid-base disorders[J]. Semin Nephrol, 2019, 39(4): 340-352.
|
[38] |
Demirci FY, Chang MH, Mah TS, et al. Proximal renal tubular acidosis and ocular pathology: a novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1) [J]. Mol Vis, 2006, 12(4): 324-330.
|
[39] |
Du L, Zahra A, Jia M, et al. Understanding the functional expression of Na+-coupled SLC4 transporters in the renal and nervous systems: a review[J]. Brain Sci, 2021, 11(10): 1276.
|
[40] |
Suzuki M, Seki G, Yamada H, et al. Functional roles of electrogenic sodium bicarbonate cotransporter NBCe1 in ocular tissues[J]. Open Ophthalmol J, 2012, 6(1): 36-41.
|
[41] |
Bok D, Schibler MJ, Pushkin A, et al. Immunolocalization of electrogenic sodium-bicarbonate cotransporters pNBC1 and kNBC1 in the rat eye[J]. Am J Physiol Renal Physiol, 2001, 281(5): F920-935.
|
[42] |
Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies[J]. Nephrol Dial Transplant, 2012, 27(12): 4273-4287.
|
[43] |
Zhekova HR, Pushkin A, Kayık G, et al. Identification of multiple substrate binding sites in SLC4 transporters in the outward-facing conformation: Insights into the transport mechanism[J]. J Biol Chem, 2021, 296: 100724.
|
[44] |
Sweeney E, Fryer A, Mountford R, et al. Nail patella syndrome: a review of the phenotype aided by developmental biology[J]. J Med Genet, 200, 40(3): 153-162.
|
[45] |
Gabriel LA, Sachdeva R, Marcotty A, et al. Oculodentodigital dysplasia: new ocular findings and a novel connexin 43 mutation[J]. Arch Ophthalmol, 2011, 129(6): 781-784.
|
[46] |
Paznekas WA, Boyadjiev SA, Shapiro RE, et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia[J]. Am J Hum Genet, 2003, 72(2): 408-418.
|
[47] |
Maas SM, Kayserili H, Lam J, et al. Further delineation of Frank-ter Haar syndrome[J]. Am J Med Genet A, 2004,131(2): 127-133.
|
[48] |
Iqbal Z, Cejudo-Martin P, de Brouwer A, et al. Disruption of the podosome adaptor protein TKS4 (SH3PXD2B) causes the skeletal dysplasia, eye, and cardiac abnormalities of Frank-Ter Haar Syndrome[J]. Am J Hum Genet, 2010, 86(2): 254-261.
|
[49] |
Stevens CA, Pouncey J, Knowles D. Adults with Rubinstein-Taybi syndrome[J]. Am J Med Genet A, 2011, 155A(7): 1680-1684.
|
[50] |
Petrij F, Giles RH, Dauwerse HG, et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP[J]. Nature, 1995, 376(6538): 348-351.
|
[51] |
Schorry EK, Keddache M, Lanphear N, et al. Genotype-phenotype correlations in Rubinstein-Taybi syndrome[J]. Am J Med Genet A, 2008, 146A(19): 2512-2519.
|
[52] |
Kissil JL, Blakeley JO, Ferner RE, et al. What′ s new in neurofibromatosis? Proceedings from the 2009 NF Conference: new frontiers[J]. Am J Med Genet A, 2010, 152A(2): 269-283.
|
[53] |
Maillette-de-Buy-Wenniger-Prick LJ, Hennekam RC. The Peters′ plus syndrome: a review[J]. Ann Genet, 2002, 45(2): 97-103.
|
[54] |
Wanders RJ. Metabolic and molecular basis of peroxisomal disorders: a review[J]. Am J Med Genet A, 2004, 126A(4): 355-375.
|
[55] |
Ebberink MS, Mooijer PA, Gootjes J, et al. Genetic classification and mutational spectrum of more than 600 patients with a Zellweger syndrome spectrum disorder[J]. Hum Mutat, 2011, 32(1): 59-69.
|
[56] |
Oduber CE, van-der-Horst CM, Hennekam RC. Klippel-Trenaunay syndrome: diagnostic criteria and hypothesis on etiology[J]. Ann Plast Surg, 2008, 60(2): 217-223.
|
[57] |
Kiwaki T, Umehara F, Takashima H, et al. Hereditary motor and sensory neuropathy with myelin folding and juvenile onset glaucoma[J]. Neurology, 2000, 55(3): 392-397.
|
[58] |
Azzedine H, Bolino A, Taïeb T, et al. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma[J]. Am J Hum Genet, 2003, 72(5): 1141-1153.
|
[59] |
Currier SC, Lee CK, Chang BS, et al. Mutations in POMT1 are found in a minority of patients with Walker-Warburg syndrome[J]. Am J Med Genet A, 2005,133(1): 53-57.
|
[60] |
Roscioli T, Kamsteeg EJ, Buysse K, et al. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan[J]. Nat Genet, 2012, 44(5): 581-585.
|
[61] |
Morleo M, Pramparo T, Perone L, et al. Microphthalmia with linear skin defects (MLS) syndrome: clinical, cytogenetic, and molecular characterization of 11 cases[J]. Am J Med Genet A, 2005, 137(2): 190-198.
|
[62] |
Wimplinger I, Morleo M, Rosenberger G, et al. Mutations of the mitochondrial holocytochrome c-type synthase in X-linked dominant microphthalmia with linear skin defects syndrome[J]. Am J Hum Genet, 2006, 79(5): 878-889.
|
[63] |
Igarashi T, Inatomi J, Sekine T, et al. Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities[J]. Nat Genet, 1999, 23(3): 264-266.
|
[64] |
Cook E, Davis J, Israni R, et al. Prevalence of metabolic acidosis among patients with CKD and hyperkalemia[J]. Am J Kidney Dis, 2020, 75(6): 561-562.
|
[65] |
Guo W, Ji P, Xie Y. Genetic diagnosis and treatment of inherited renal tubular acidosis[J]. Kidney Dis, 2023, 9(5): 371-383.
|
[66] |
Karatzas A, Paridis D, Kozyrakis D, et al. Fanconi syndrome in the adulthood. The role of early diagnosis and treatment[J]. J Musculoskelet Neuronal Interact, 2017,17(3): 303-306.
|
[67] |
Dobbin SJH, Petrie JR, Lean MEJ, et al. Fludrocortisone therapy for persistent hyperkalaemia[J]. Diabet Med, 2017, 34(8): 1005-1008.
|
[68] |
Quaranta L, Biagioli E, Riva I, et al. The Glaucoma Italian Pediatric Study (GIPSy): 1-year results[J]. J Glaucoma, 2017, 26(11): 987-994.
|
[69] |
Enyedi LB, Freedman SF. Latanoprost for the treatment of pediatric glaucoma[J]. Surv Ophthalmol, 2002, 47(8): S129-S132.
|
[70] |
Dixon ER, Landry T, Venkataraman S, et al. A 3-month safety and efficacy study of travoprost 0.004% ophthalmic solution compared with timolol in pediatric patients with glaucoma or ocular hypertension[J]. J AAPOS, 2017, 21(5): 370-374.
|
[71] |
Al-Shahwan S, Al-Torbak AA, Turkmani S, et al. Side-effect profile of brimonidine tartrate in children[J]. Ophthalmology, 2005,112(12): 2143.
|
[72] |
Sit AJ, Gupta D, Kazemi A, et al. Netarsudil improves trabecular outflow facility in patients with primary open angle glaucoma or ocular Hypertension: A Phase 2 Study[J]. Am J Ophthalmol, 2021, 226(6): 262-269.
|
[73] |
Sacchi M, Lizzio RAU, Villani E, et al. Medical management of pediatric glaucoma: lessons learned from randomized clinical trials[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(8): 1579-1586.
|
[74] |
Al-Dawood A, Ahmad K, Al-Salman S, et al. Barriers and adherence to glaucoma medication in a paediatric glaucoma population: A cross-sectional survey in central Saudi Arabia[J]. Eur J Ophthalmol, 2022, 32(6): 3451-3460.
|
[75] |
Qiao Y, Tan C, Chen X, et al. Gonioscopy-assisted transluminal trabeculotomy versus goniotomy with Kahook dual blade in patients with uncontrolled juvenile open-angle glaucoma: a retrospective study[J]. BMC Ophthalmol, 2021, 21(1): 395.
|
[76] |
Jacobson A, Bohnsack BL. Ologen augmentation of Ahmed valves in pediatric glaucomas[J]. J AAPOS, 2022, 26(3): 122.e1-122.e6.
|
[77] |
Kaushik S, Kataria P, Raj S, et al. Safety and efficacy of a low-cost glaucoma drainage device for refractory childhood glaucoma[J]. Br J Ophthalmol, 2017, 101(12): 1623-1627.
|
[78] |
Shen LL, Guo X, Johnson TV, et al. Comparing Ahmed-FP7 to Baerveldt-250 and Baerveldt-350 surgical outcomes: 1-year results from a retrospective cohort study leveraging the electronic health record[J]. BMJ Open Ophthalmol, 2023, 8(1): e001308.
|
[79] |
Gedde SJ, Singh K, Schiffman JC, et al. Tube Versus Trabeculectomy Study Group. The Tube Versus Trabeculectomy Study: interpretation of results and application to clinical practice[J]. Curr Opin Ophthalmol, 2012, 23(2): 118-126.
|
[80] |
Jacobson A, Besirli CG, Bohnsack BL. Outcomes of combined endoscopic vitrectomy and posteriorly placed glaucoma drainage devices in pediatric patients[J]. BMC Ophthalmol, 2022, 22(1): 149.
|
[81] |
Traverso CE, Carassa RG, Fea AM, et al. Effectiveness and safety of Xen gel stent in glaucoma surgery: A systematic review of the literature[J]. J Clin Med, 2023, 12(16): 5339.
|
[82] |
Al-Owaifeer AM, Almutairi AT, Schargel K. The outcomes of trans-scleral cyclophotocoagulation in pediatric glaucoma secondary to Sturge-Weber syndrome[J]. J AAPOS, 2022, 26(2): 78.e1-78.e5.
|
[83] |
FießA, Shah P, Sii F, et al. Trabeculectomy or transscleral cyclophotocoagulation as initial treatment of secondary childhood glaucoma in northern Tanzania[J]. J Glaucoma, 2017, 26(7): 657-660.
|
[84] |
Abdelrahman AM, El Sayed YM. Micropulse versus continuous wave transscleral cyclophotocoagulation in refractory pediatric glaucoma[J]. J Glaucoma, 2018, 27(10): 900-905.
|
[85] |
Shen R, Li VSW, Wong MOM, et al. Pediatric glaucoma-from screening, early detection to management[J]. Children, 2023,10(2): 181.
|