切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (03) : 177 -182. doi: 10.3877/cma.j.issn.2095-2007.2023.03.010

综述

老视药物疗法的研究进展
刘德海, 刘一昀, 蓝倩倩, 孙彤, 边林博, 秦锐, 邱磊, 周一凡, 齐虹()   
  1. 100191 北京大学第三医院眼科 眼部神经损伤的重建保护与康复北京市重点实验室
    100191 北京大学第三医院眼科 眼部神经损伤的重建保护与康复北京市重点实验室;南宁 530021,广西壮族自治区人民医院眼科
  • 收稿日期:2022-10-27 出版日期:2023-06-28
  • 通信作者: 齐虹
  • 基金资助:
    广西医疗卫生适宜技术开发与推广应用项目(S2020077)

Advances in pharmacological treatments for prebyopia

Dehai Liu, Yiyun Liu, Qianqian Lan, Tong Sun, Linbo Bian, Rui Qin, Lei Qiu, Yifan Zhou, Hong Qi()   

  1. Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing 100191, China
    Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing 100191, China; Department of Ophthalmology, The People′s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
  • Received:2022-10-27 Published:2023-06-28
  • Corresponding author: Hong Qi
引用本文:

刘德海, 刘一昀, 蓝倩倩, 孙彤, 边林博, 秦锐, 邱磊, 周一凡, 齐虹. 老视药物疗法的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 177-182.

Dehai Liu, Yiyun Liu, Qianqian Lan, Tong Sun, Linbo Bian, Rui Qin, Lei Qiu, Yifan Zhou, Hong Qi. Advances in pharmacological treatments for prebyopia[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(03): 177-182.

老视是指因年龄增长所致的不可逆性生理性调节减弱,并严重影响患者视觉质量的现象。未经恰当矫正的老视是全球人口视力受损的首要因素。近年来,框架眼镜、手术及角膜接触镜等传统矫正方案已不能满足老视人群日益增长的需求,药物治疗老视可能是其新方案。本文中笔者对老视药物的应用现状和发展策略进行综述,旨在比较现有药物的有效性与安全性,并提出未来新药开发的潜在方向。

Presbyopia is the irreversible loss of the accommodative ability of the eye that occurs due to ageing, which severely affects patients′ visual quality. Globally, presbyopia without proper correction is the primary cause of visual impairment. Despite widespread use of glasses, surgery and contact lens, there has been an increasing demand for novel treatment strategies. Recently, the pharmacological treatments for presbyopia provide an alternative strategy. The current status and evolving strategies of pharmacological approaches to the treatment of presbyopia were reviewed, aiming to compare the safety and efficiency of current therapies and put forward potential drug candidates.

表1 药物治疗老视不良事件的文献汇总
[1]
GBD 2019 Blindness and Vision Impairment Collaborators.Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study[J]. Lancet Glob Health, 2021, 9(2): e130-e143.
[2]
葛坚. 眼科学[M]. 第二版. 北京:人民卫生出版社,2010: 373-382.
[3]
Fricke TR, Tahhan N, Resnikoff S, et al. Global prevalence of presbyopia and vision impairment from uncorrected presbyopia: systematic review, meta-analysis, and modelling[J]. Ophthalmology, 2018, 125(10): 1492-1499.
[4]
Han X, Lee PY, Keel S, et al. Prevalence and incidence of presbyopia in urban Southern China[J]. Br J Ophthalmol, 2018, 102(11): 1538-1542.
[5]
Xu T, Wang B, Liu H, et al. Prevalence and causes of vision loss in China from 1990 to 2019: findings from the Global Burden of Disease Study 2019[J]. Lancet Public Health, 2020, 5(12): e682-e691.
[6]
Wolffsohn JS, Davies LN. Presbyopia: Effectiveness of correction strategies[J]. Prog Retin Eye Res, 2019, 68: 124-143.
[7]
Stokes J, Shirneshan E, Graham CA, et al. Exploring the experience of living with and managing presbyopia[J]. Optom Vis Sci, 2022, 99(8): 635-644.
[8]
De-Jong P. The quest for the human ocular accommodation mechanism[J]. Acta Ophthalmol, 2020, 98(1): 98-104.
[9]
Kasthurirangan S, Markwell EL, Atchison DA, et al. MRI study of the changes in crystalline lens shape with accommodation and aging in humans[J]. J Vis, 2011, 11(3): 19.
[10]
Richdale K, Sinnott LT, Bullimore MA, et al. Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye[J]. Invest Ophthalmol Vis Sci, 2013, 54(2): 1095-1105.
[11]
Xie X, Sultan W, Corradetti G, et al. Assessing accommodative presbyopic biometric changes of the entire anterior segment using single swept-source OCT image acquisitions[J]. Eye (Lond), 2022, 36(1): 119-128.
[12]
Alió JL, Alió Del Barrio JL, Vega-Estrada A. Accommodative intraocular lenses: where are we and where we are going[J]. Eye Vis (Lond), 2017, 4: 16.
[13]
Heys KR, Friedrich MG, Truscott RJ. Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, alpha-crystallin, in maintaining lens flexibility[J]. Aging Cell, 2007, 6(6): 807-815.
[14]
Nandi SK, Nahomi RB, Rankenberg J, et al. Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of α-crystallin: Implications for lens aging and presbyopia[J]. J Biol Chem, 2020, 295(17): 5701-5716.
[15]
Khadka NK, Timsina R, Mainali L. An AFM approach applied in a study of α-crystallin membrane association: new insights into lens hardening and presbyopia development[J]. Membranes (Basel), 2022, 12(5): 522.
[16]
Shao Y, Tao A, Jiang H, et al. Age-related changes in the anterior segment biometry during accommodation[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3522-3530.
[17]
Cabeza-Gil I, Grasa J, Calvo B. A numerical investigation of changes in lens shape during accommodation[J]. Sci Rep, 2021, 11(1): 9639.
[18]
Cabeza-Gil I, Grasa J, Calvo B. A validated finite element model to reproduce Helmholtz′s theory of accommodation: a powerful tool to investigate presbyopia[J]. Ophthalmic Physiol Opt, 2021, 41(6): 1241-1253.
[19]
Croft MA, Glasser A, Heatley G, et al. Accommodative ciliary body and lens function in rhesus monkeys, Ⅰ:normal lens, zonule and ciliary process configuration in the iridectomized eye[J]. Invest Ophthalmol Vis Sci, 2006, 47(3): 1076-1086.
[20]
Farnsworth PN, Shyne SE. Anterior zonular shifts with age[J]. Exp Eye Res, 1979, 28(3): 291-297.
[21]
Goldberg DB. Computer-animated model of accommodation and presbyopia[J]. J Cataract Refract Surg, 2015, 41(2): 437-445.
[22]
Sheppard AL, Davies LN. The effect of ageing on in vivo human ciliary muscle morphology and contractility[J]. Invest Ophthalmol Vis Sci, 2011, 52(3): 1809-1816.
[23]
Domínguez-Vicent A, Monsálvez-Romín D, Esteve-Taboada JJ, et al. Effect of age in the ciliary muscle during accommodation: Sectorial analysis[J]. J Optom, 2019, 12(1): 14-21.
[24]
Waring GO, Price FW, Wirta D, et al. Safety and Efficacy of AGN-190584 in individuals with presbyopia: The GEMINI 1 Phase 3 Randomized Clinical Trial[J]. JAMA Ophthalmol, 2022, 140(4): 363-371.
[25]
Charman WN. Developments in the correction of presbyopia I: spectacle and contact lenses[J]. Ophthalmic Physiol Opt, 2014, 34(1): 8-29.
[26]
Elliott DB. The Glenn A. Fry award lecture 2013: blurred vision, spectacle correction, and falls in older adults[J]. Optom Vis Sci, 2014, 91(6): 593-601.
[27]
Mercer RN, Milliken CM, Waring GO, et al. Future trends in presbyopia correction[J]. J Refract Surg, 2021, 37(S1): s28-s34.
[28]
吕帆,王一益,瞿佳. 以增加景深和改善晶状体弹性为目标的老视药物[J]. 中华眼科杂志202258(4):315-320.
[29]
Orman B, Benozzi G. Pharmacological strategies for treating presbyopia[J]. Curr Opin Ophthalmol, 2021, 32(4): 319-323.
[30]
Montés-Micó R, Charman WN. Pharmacological strategies for presbyopia correction[J]. J Refract Surg, 2019, 35(12): 803-814.
[31]
Xu R, Thibos L, Bradley A. Effect of target luminance on optimum pupil diameter for presbyopic eyes[J]. Optom Vis Sci, 2016, 93(11): 1409-1419.
[32]
Xu R, Gil D, Dibas M, et al. The effect of light level and small pupils on presbyopic reading performance[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5656-5664.
[33]
Xu R, Gil D, Dibas M, et al. Time-course of the visual Impact on presbyopes of a low dose miotic[J]. Ophthalmic Physiol Opt, 2021, 41(1): 73-83.
[34]
Abdelkader A, Kaufman HE. Clinical outcomes of combined versus separate carbachol and brimonidine drops in correcting presbyopia[J]. Eye Vis (Lond), 2016, 3: 31.
[35]
Katz JA, Karpecki PM, Dorca A, et al. Presbyopia: a review of current treatment options and emerging therapies[J]. Clin Ophthalmol, 2021, 15: 2167-2178.
[36]
Abdelkader A. Improved presbyopic vision with miotics[J]. Eye Contact Lens, 2015, 41(5): 323-327.
[37]
Abdelkader A. Influence of different concentrations of Carbachol drops on the outcome of presbyopia treatment-A randomized study[J]. Int J Ophthalmic Res, 2019, 5(1): 317-320.
[38]
Vargas V, Vejarano F, Alió JL. Near vision improvement with the use of a new topical compound for presbyopia correction: a prospective, consecutive interventional non-comparative clinical study[J]. Ophthalmol Ther, 2019, 8(1): 31-39.
[39]
Benozzi G, Perez C, Leiro J, et al. Presbyopia treatment with eye drops: an eight year retrospective study[J]. Transl Vis Sci Technol, 2020, 9(7): 25.
[40]
Benozzi G, Cortina ME, Gimeno E, et al. A multicentric study of pharmacological treatment for presbyopia[J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259(8): 2441-2450.
[41]
Korenfeld MS, Robertson SM, Stein JM, et al. Topical lipoic acid choline ester eye drop for improvement of near visual acuity in subjects with presbyopia: a safety and preliminary efficacy trial[J]. Eye (Lond), 2021, 35(12): 3292-3301.
[42]
Pepose JS, Hartman PJ, DuBiner HB, et al. Phentolamine mesylate ophthalmic solution provides lasting pupil modulation and improves near visual acuity in presbyopic glaucoma patients in a randomized phase 2b clinical trial[J]. Clin Ophthalmol, 2021, 15: 79-91.
[43]
Kubota M, Kubota S, Kobashi H, et al. Difference in pupillary diameter as an important factor for evaluating amplitude of accommodation: a prospective observational study[J]. J Clin Med, 2020, 9(8): 2678.
[44]
Benozzi J, Benozzi G, Orman B. Presbyopia: a new potential pharmacological treatment[J]. Med Hypothesis Discov Innov Ophthalmol, 2012, 1(1): 3-5.
[45]
Facal S, Leiro J, Gualtieri A, et al. Ocular surface evaluation in patients treated with pharmacological treatment for presbyopia[J]. Int J Ophthalmic Pathol, 2018, 7(2): 1-7.
[46]
Meghpara BB, Lee JK, Rapuano CJ, et al. Pilocarpine 1.25% and the changing landscape of presbyopia treatment[J]. Curr Opin Ophthalmol, 2022, 33(4): 269-274.
[47]
Jackson MA, Giyanani J, Shabaik Y, et al. In vitro and in-eye comparison of commercial pilocarpine ophthalmic solution and an optimized, reformulated pilocarpine for presbyopia treatment[J]. Ophthalmol Ther, 2022, 11(2): 869-879.
[48]
Al-Khersan H, Flynn HW, Townsend JH. Retinal detachments associated with topical pilocarpine use for presbyopia[J]. Am J Ophthalmol, 2022, 242: 52-55.
[49]
Amarikwa L, Michalak SM, Caul S, et al. Vitreofoveal traction associated with pilocarpine for presbyopia[J]. Ophthalmic Surg Lasers Imaging Retina, 2022, 53(7): 410-411.
[50]
彭洁,罗谦,程依琏,等. 酒石酸溴莫尼定0.15%滴眼液治疗开角型青光眼及高眼压症的临床研究[J]. 中华眼外伤职业眼病杂志201436(8):569-573.
[51]
Grzybowski A, Ruamviboonsuk V. Pharmacological treatment in presbyopia[J]. J Clin Med, 2022, 11(5): 1385.
[52]
McAvoy JW, Chamberlain CG, de-Longh RU, et al. Lens development[J]. Eye (Lond), 1999, 13(3): 425-437.
[53]
Fan X, Zhou S, Wang B, et al. Evidence of highly conserved β-crystallin disulfidome that can be mimicked by in vitro oxidation in age-related human cataract and glutathione depleted mouse lens[J]. Mol Cell Proteomics, 2015, 14(12): 3211-3223.
[54]
Packer L, Witt EH, Tritschler HJ. alpha-Lipoic acid as a biological antioxidant[J]. Free Radic Biol Med, 1995, 19(2): 227-250.
[55]
Cagini C, Leontiadis A, Ricci MA, et al. Study of alpha-lipoic acid penetration in the human aqueous after topical administration[J]. Clin Exp Ophthalmol, 2010, 38(6): 572-576.
[56]
Meghpara BB, Lee JK, Rapuano CJ, et al. Pilocarpine 1.25% and the changing landscape of presbyopia treatment[J]. Curr Opin Ophthalmol, 202233(4): 269-274.
[57]
Garner WH, Garner MH. Protein disulfide levels and lens elasticity modulation: applications for presbyopia[J]. Invest Ophthalmol Vis Sci, 2016, 57(6): 2851-2863.
[58]
Hu CC, Liao JH, Hsu KY, et al. Role of pirenoxine in the effects of catalin on in vitro ultraviolet-induced lens protein turbidity and selenite-induced cataractogenesis in vivo[J]. Mol Vis, 2011, 17: 1862-1870.
[59]
Upaphong P, Thonusin C, Choovuthayakorn J, et al. The possible positive mechanisms of pirenoxine in cataract formation[J]. Int J Mol Sci, 2022, 23(16): 9431.
[60]
Tsuneyoshi Y, Higuchi A, Negishi K, et al. Suppression of presbyopia progression with pirenoxine eye drops: experiments on rats and non-blinded, randomized clinical trial of efficacy[J]. Sci Rep, 2017, 7(1): 6819.
[61]
Inui S, Ozawa K, Song M, et al. Contact dermatitis due to pirfenoxone[J]. Contact Dermatitis, 2004, 50(6): 375-376.
[62]
Renna A, Vejarano LF, De-la-Cruz E, et al. Pharmacological treatment of presbyopia by novel binocularly instilled eye drops: a pilot study[J]. Ophthalmol Ther, 2016, 5(1): 63-73.
[63]
Pek YS, Wu H, Mohamed ST, et al. Long-term subconjunctival delivery of brimonidine tartrate for glaucoma treatment using a microspheres/carrier system[J]. Adv Healthc Mater, 2016, 5(21): 2823-2831.
[64]
Nguyen DD, Luo LJ, Lai JY. Effects of shell thickness of hollow poly(lactic acid) nanoparticles on sustained drug delivery for pharmacological treatment of glaucoma[J]. Acta Biomater, 2020, 111: 302-315.
[65]
Lancina MGSingh S, Kompella UB, et al. Fast dissolving dendrimer nanofiber mats as alternative to eye drops for more efficient antiglaucoma drug delivery[J]. ACS Biomater Sci Eng, 2017, 3(8): 1861-1868.
[66]
Owodeha-Ashaka K, Ilomuanya MO, Iyire A. Evaluation of sonication on stability-indicating properties of optimized pilo-carpine hydrochloride-loaded niosomes in ocular drug delivery[J]. Prog Biomater, 2021, 10(3): 207-220.
[67]
Jain N, Verma A, Jain NI. Formulation and investigation of pilocarpine hydrochloride niosomal gels for the treatment of glaucoma: intraocular pressure measurement in white albino rabbits[J]. Drug Deliv, 2020, 27(1): 888-899.
[68]
Nair KL, Vidyanand S, James J, et al. Pilocarpine-loaded poly (dl-lactic-co-glycolic acid) nanoparticles as potential candidates for controlled drug delivery with enhanced ocular pharmacological response[J]. J Appl Polym Sci, 2012, 124(3): 2030-2036.
[69]
Kompella UB, Hartman RR, Patil MA. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma[J]. Prog Retin Eye Res, 2021, 82: e100901.
[70]
Dabral K, Uniyal Y. Ocular inserts: Novel approach for drug delivery into eyes[J]. GSC Bio Pharm Sci, 2019, 7(3): 1-7.
[71]
Belamkar A, Harris A, Zukerman R, et al. Sustained release glaucoma therapies: Novel modalities for overcoming key treatment barriers associated with topical medications[J]. Ann Med, 2022, 54(1): 343-358.
[72]
Lim JC, Suzuki-Kerr H, Nguyen TX, et al. Redox homeostasis in ocular tissues: circadian regulation of glutathione in the lens?[J]. Antioxidants (Basel), 2022, 11(8): 1516.
[73]
Giannone AA, Li L, Sellitto C, et al. Physiological mechanisms regulating lens transport[J]. Front Physiol, 2021, 12: e818649.
[74]
Nakazawa Y, Aoki M, Doki Y, et al. Oral consumption of α-glucosyl-hesperidin could prevent lens hardening, which causes presbyopia[J]. Biochem Biophys Rep, 2021, 25: e100885.
[75]
Nandi SK, Rankenberg J, Rakete S, et al. Glycation-mediated protein crosslinking and stiffening in mouse lenses are inhibited by carboxitin in vitro[J]. Glycoconj J, 2021, 38(3): 347-359.
[76]
Maddirala Y, Tobwala S, Karacal H, et al. Prevention and reversal of selenite-induced cataracts by N-acetylcysteine amide in Wistar rats[J]. BMC Ophthalmol, 2017, 17(1): 54.
[77]
Zhang J, Wang S. Topical use of coenzyme Q10-loaded liposomes coated with trimethyl chitosan: tolerance, precorneal retention and anti-cataract effect[J]. Int J Pharm, 2009, 372(1-2): 66-75.
[78]
Pfaff A, Chernatynskaya A, Vineyard H, et al. Thiol antioxidants protect human lens epithelial (HLE B-3) cells against tert-butyl hydroperoxide-induced oxidative damage and cytotoxicity[J]. Biochem Biophys Rep, 2022, 29: e101213.
[79]
Lim JC, Grey AC, Zahraei A, et al. Age-dependent changes in glutathione metabolism pathways in the lens: New insights into therapeutic strategies to prevent cataract formation——A review[J]. Clin Exp Ophthalmol, 2020, 48(8): 1031-1042.
[80]
Schey KL, Gletten RB, O′Neale CVT, et al. Lens aquaporins in health and disease: location is everything![J]. Front Physiol, 2022, 13: 882550.
[81]
Nakazawa Y. Study of the mechanisms of maintaining the transparency of the lens and treatment of its related diseases for making anti-cataract and/or anti-presbyopia drugs[J]. Yakugaku Zasshi, 2020, 140(9): 1095-1099.
[82]
Pescosolido N, Barbato A, Giannotti R, et al. Age-related changes in the kinetics of human lenses: prevention of the cataract[J]. Int J Ophthalmol, 2016, 9(10): 1506-1517.
[83]
Nakazawa Y, Doki Y, Sugiyama Y, et al. Effect of Alpha-Glucosyl-Hesperidin Consumption on Lens Sclerosis and Presbyopia[J]. Cells, 2021, 10(2): 382.
[84]
Gerometta R, Candia OA. A decrease in the permeability of aquaporin zero as a possible cause for presbyopia[J]. Med Hypotheses, 2016, 86: 132-134.
[85]
Salman MM, Kitchen P, Yool AJ, et al. Recent breakthroughs and future directions in drugging aquaporins[J]. Trends Pharmacol Sci, 2022, 43(1): 30-42.
[1] 段燕, 郭欣, 吕慧芳, 王国利, 黄明光, 董英俊. 乳腺癌患者辅助化疗后感染肺孢子菌一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 318-321.
[2] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[3] 江泽莹, 王安婷, 王姣丽, 陈慈, 周秋玲, 黄燕娟, 周芳, 薛琰, 周剑烽, 谭文勇, 杜美芳. 多种植物油组分预防肿瘤放化疗相关毒性反应的效果分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 523-527.
[4] 邓欣怡, 曾振宇, 李晓岚. 细菌群体感应信号对宿主免疫调节机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 140-147.
[5] 陈珊, 胡智强, 张月明, 唐定, 黎蒙, 赵帅. Orai1、Orai3在乳腺癌组织中的表达及与病理学指标的相关性分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 514-517.
[6] 崔键, 戴庆. 基于肝囊型包虫病所致过敏反应模型研究Treg细胞数量比例与过敏反应的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 427-430.
[7] 汪必涛, 王征, 王国斌. 林奇综合征的治疗现状及进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 332-335.
[8] 朱青青, 卫贞祺. 腹股沟疝患者围手术期自我能效管理探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 773-777.
[9] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[10] 刘康凯, 姚光辉. 补肺纳肾汤对COPD稳定期患者肺功能及外周血Treg、Th17细胞比率的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 376-378.
[11] 戴俊, 李硕, 曹影, 汪守峰, 宋红毛, 蔡菁菁, 邵敏, 陈莉, 程雷, 怀德. 鼻内镜下改良高选择性翼管神经低温等离子消融术对中重度变应性鼻炎的效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 689-693.
[12] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[13] 李世浩, 李子豪, 董博, 吴春莉, 吴彬, 盛银良, 齐宇. 胞质分裂蛋白调节因子1对肺腺癌细胞迁移、侵袭和增殖的影响[J]. 中华胸部外科电子杂志, 2023, 10(03): 164-175.
[14] 金泽平, 董晶, 柳云鹏, 汪阳. 菌群-肠道-脑轴与缺血性卒中危险因素关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 510-517.
[15] 史静, 郝晨曦, 何苗, 李伟荣. 昼夜节律与沉默信息调节因子1在缺血性脑卒中神经保护中的相互作用研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 154-158.
阅读次数
全文


摘要