切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (06) : 362 -366. doi: 10.3877/cma.j.issn.2095-2007.2022.06.008

综述

Dickkopf相关蛋白-1在眼部纤维化疾病中的研究进展
宋宇1, 包秀丽2,()   
  1. 1. 010050 呼和浩特,内蒙古医科大学第一临床医学院2020级硕士研究生
    2. 010050 呼和浩特,内蒙古医科大学附属医院眼科
  • 收稿日期:2022-04-05 出版日期:2022-12-28
  • 通信作者: 包秀丽
  • 基金资助:
    内蒙古自治区自然科学基金项目(2019MS08116)

Research progress of Dickkopf-1 in ocular fibrosis

Yu Song1, Xiuli Bao2,()   

  1. 1. Master′s degree 2020, First Clinical Medical College of Inner Mongolia Medical University, Hohhot 010050, China
    2. Department of Ophthalmology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
  • Received:2022-04-05 Published:2022-12-28
  • Corresponding author: Xiuli Bao
引用本文:

宋宇, 包秀丽. Dickkopf相关蛋白-1在眼部纤维化疾病中的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 362-366.

Yu Song, Xiuli Bao. Research progress of Dickkopf-1 in ocular fibrosis[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(06): 362-366.

纤维化是组织损伤修复的重要过程,而过度的纤维化常致使器官的结构破坏和功能丧失。无翅信号通路(WNT)通过调控机体内细胞增殖、更新及凋亡维持器官组织内稳态,若过度激活则导致机体发生纤维化疾病。Dickkopf相关蛋白(DKK)是WNT信号通路的内源性调节蛋白,Dickkopf相关蛋白-1(DKK1)通过竞争性结合WNT受体可抑制多种眼部纤维化疾病的发展。本文中笔者就国内外对DKK1在角膜纤维愈合、后发性白内障发病、眼底纤维化疾病进展及病理性近视眼中作用的研究进行综述。

Fibrosis is an important process of tissue damage and repair, while excessive fibrosis often leads to structural destruction and functional loss of organs. Wnt signal pathway (WNT) maintains homeostasis in organs and tissues by regulating cell proliferation, renewal and apoptosis in the body, while its over-activation leads to fibrosis in the body. Dickkopf-associated protein (DKK) is an endogenous regulatory protein of WNT. Dickkopf-associated protein 1 (DKK1) inhibits the development of various ocular fibrosis diseases by competing with WNT receptors. The role of DKK1 in the healing of corneal fibers, the occurrence of post-cataract, the progress of fundus fibrosis and pathological myopia were reviewed in this paper.

[18]
Gan YR, Wei L, Wang YZ, et al. Dickkopf-1/cysteine?rich angiogenic inducer 61 axis mediates palmitic acid?induced inflammation and apoptosis of vascular endothelial cells [J]. Mol Med Rep, 2021, 23(2): 122.
[19]
Ljubimov AV, Saghizadeh M. Progress in corneal wound healing [J]. Prog Retin Eye Res, 2015, 49: 17-45.
[20]
Laplante P, Sirois I, Raymond MA, et al. Caspase-3-mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis [J]. Cell Death Differ, 2010, 17(2): 291-303.
[21]
Lyu J, Joo CK. Wnt-7a up-regulates matrix metalloproteinase-12 expression and promotes cell proliferation in corneal epithelial cells during wound healing [J]. J Biol Chem, 2005, 280(22): 21653-21660.
[22]
Matsui F, Babitz SK, Rhee A, et al. Mesenchymal stem cells protect against obstruction-induced renal fibrosis by decreasing STAT3 activation and STAT3-dependent MMP-9 production [J]. Am J Physiol Renal Physiol, 2017, 312(1): 25-32.
[23]
Liu X, Zhang Z, Pan S, et al. Interaction between the Wnt/β-catenin signaling pathway and the EMMPRIN/MMP-2, 9 route in periodontitis [J]. J Periodontal Res, 2018, 53(5): 842-852.
[24]
Fezza M, Moussa M, Aoun R, et al. DKK1 promotes hepatocellular carcinoma inflammation, migration and invasion: Implication of TGF-β1 [J]. PLoS One, 2019, 14(9): e0223252.
[25]
Yang S, Zhang Y, Zhang Z, et al. Insulin Promotes Corneal Nerve Repair and Wound Healing in Type 1 Diabetic Mice by Enhancing Wnt/β-Catenin Signaling [J]. Am J Pathol, 2020, 190(11): 2237-2250.
[26]
Konopińska J, Młynarczyk M, Dmuchowska DA, et al. Posterior Capsule Opacification: A Review of Experimental Studies [J]. J Clin Med, 2021, 10(13): 2847.
[27]
Wormstone IM, Wormstone YM, Smith AJO, et al. Posterior capsule opacification: What's in the bag? [J]. Prog Retin Eye Res, 2021, 82: 100905.
[28]
Bao XL, Song H, Chen Z, et al. Wnt3a promotes epithelial-mesenchymal transition, migration, and proliferation of lens epithelial cells [J]. Mol Vis, 2012, 18: 1983-1990.
[29]
Hazra S, Guha R, Jongkey G, et al. Modulation of matrix metalloproteinase activity by EDTA prevents posterior capsular opacification [J]. Mol Vis, 2012, 18: 1701-1711.
[30]
Liu T, Zhang L, Wang Y, et al. Dickkopf-1 inhibits Wnt3a-induced migration and epithelial-mesenchymal transition of human lens epithelial cells [J]. Exp Eye Res, 2017, 161: 43-51.
[31]
张利民,包秀丽. Dickkopf-1对人晶状体上皮细胞增生的抑制作用及其生物学机制 [J]. 中华实验眼科杂志,,202038(4):285-290.
[32]
Vishwakarma S, Gupta RK, Jakati S, et al. Molecular Assessment of Epiretinal Membrane: Activated Microglia, Oxidative Stress and Inflammation [J]. Antioxidants (Basel), 2020, 9(8): 654.
[33]
Hong EH, Hwang M, Shin YU, et al. Leucine-rich G Protein-coupled Receptor-5 Is Significantly Increased in the Aqueous Humor of Human Eye with Proliferative Diabetic Retinopathy [J]. Exp Neurobiol, 2018, 27(3): 238-244.
[34]
Liu B, Cong C, Ma Y, et al. Potential value of lncRNAs as a biomarker for proliferative diabetic retinopathy [J]. Eye (Lond), 2022, 36(3): 575-584.
[35]
Zhao L, Patel SH, Pei J, et al. Antagonizing Wnt pathway in diabetic retinopathy [J]. Diabetes, 2013, 62(12): 3993-3995.
[36]
Wang Z, Liu CH, Huang S, et al. Wnt Signaling in vascular eye diseases [J]. Prog Retin Eye Res, 2019, 70: 110-133.
[37]
Qiu F, He J, Zhou Y, et al. Plasma and vitreous fluid levels of Dickkopf-1 in patients with diabetic retinopathy [J]. Eye (Lond), 2014, 28(4): 402-409.
[38]
Mudhar HS. A brief review of the histopathology of proliferative vitreoretinopathy (PVR) [J]. Eye (Lond), 2020, 34(2): 246-250.
[39]
Zou H, Shan C, Ma L, et al. Polarity and epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy [J]. PeerJ, 2020, 8: e10136.
[40]
Han JW, Lyu J, Park YJ, et al. Wnt/β-Catenin Signaling Mediates Regeneration of Retinal Pigment Epithelium After Laser Photocoagulation in Mouse Eye [J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 8314-8324.
[41]
Chen HC, Zhu Y T, Chen S Y, et al. Wnt signaling induces epithelial-mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition [J]. Lab Invest, 2012, 92(5): 676-687.
[42]
Zhang C, Su L, Huang L, et al. GSK3β inhibits epithelial-mesenchymal transition via the Wnt/β-catenin and PI3K/Akt pathways [J]. Int J Ophthalmol, 2018, 11(7): 1120-1128.
[43]
Zhou J, Jiang J, Wang S, et al. DKK1 inhibits proliferation and migration in human retinal pigment epithelial cells via the Wnt/β-catenin signaling pathway [J]. Exp Ther Med, 2016, 12(2): 859-863.
[44]
Tuo J, Wang Y, Cheng R, et al. Wnt signaling in age-related macular degeneration: human macular tissue and mouse model [J]. J Transl Med, 2015, 13: 330.
[45]
Vallée A, Lecarpentier Y, Guillevin R, et al. Aerobic Glycolysis Hypothesis Through WNT/Beta-Catenin Pathway in Exudative Age-Related Macular Degeneration [J]. J Mol Neurosci, 2017, 62(3-4): 368-379.
[46]
Vallée A, Lecarpentier Y, Vallée R, et al. Circadian Rhythms in Exudative Age-Related Macular Degeneration: The Key Role of the Canonical WNT/β-Catenin Pathway [J]. Int J Mol Sci, 2020, 21(3): 820.
[47]
Hu Y, Chen Y, Lin M, et al. Pathogenic role of the Wnt signaling pathway activation in laser-induced choroidal neovascularization [J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 141-154.
[48]
Qiu F, Liu Z, Zhou Y, et al. Decreased Circulating Levels of Dickkopf-1 in Patients with Exudative Age-related Macular Degeneration [J]. Sci Rep, 2017, 7(1): 1263.
[49]
Jonas JB, Xu L. Histological changes of high axial myopia [J]. Eye (Lond), 2014, 28(2): 113-117.
[1]
Baetta R, Banfi C. Dkk (Dickkopf) Proteins [J]. Arterioscler Thromb Vasc Biol, 2019, 39(7): 1330-1342.
[2]
Sadeghi S, Poorebrahim M, Rahimi H, et al. In silico studying of the whole protein structure and dynamics of Dickkopf family members showed that N-terminal domain of Dickkopf 2 in contrary to other Dickkopfs facilitates its interaction with low density lipoprotein receptor related protein 5/6 [J]. J Biomol Struct Dyn, 2019, 37(10): 2564-2580.
[3]
Patel S, Barkell AM, Gupta D, et al. Structural and functional analysis of Dickkopf 4 (Dkk4): New insights into Dkk evolution and regulation of Wnt signaling by Dkk and Kremen proteins [J]. J Biol Chem, 2018, 293(31): 12149-12166.
[4]
Matoba K, Mihara E, Tamura-Kawakami K, et al. Conformational Freedom of the LRP6 Ectodomain Is Regulated by N-glycosylation and the Binding of the Wnt Antagonist Dkk1 [J]. Cell Rep, 2017, 18(1): 32-40.
[5]
Huang Y, Liu L, Liu A. Dickkopf-1: Current knowledge and related diseases [J]. Life Sci, 2018, 209: 249-254.
[6]
Pfaff EM, Becker S, Günther A, et al. Dickkopf proteins influence lung epithelial cell proliferation in idiopathic pulmonary fibrosis [J]. Eur Respir J, 2011, 37(1): 79-87.
[7]
Burgy O, Königshoff M. The WNT signaling pathways in wound healing and fibrosis [J]. Matrix Biol, 2018, 68-69: 67-80.
[8]
Tran FH, Zheng JJ. Modulating the wnt signaling pathway with small molecules [J]. Protein Sci, 2017, 26(4): 650-661.
[9]
Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines [J]. Nature, 2020, 587(7835): 555-566.
[10]
Hu HH, Cao G, Wu X Q, et al. Wnt signaling pathway in aging-related tissue fibrosis and therapies [J]. Ageing Res Rev, 2020, 60: 101063.
[11]
Ren S, Johnson BG, Kida Y, et al. LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1 [J]. Proc Natl Acad Sci U S A, 2013, 110(4): 1440-1445.
[12]
Yao L, Zhang D, Zhao X, et al. Dickkopf-1-promoted vasculogenic mimicry in non-small cell lung cancer is associated with EMT and development of a cancer stem-like cell phenotype [J]. J Cell Mol Med, 2016, 20(9): 1673-1685.
[13]
Zhou X, Wang Y, Li Q, et al. LncRNA Linc-PINT inhibits miR-523-3p to hamper retinoblastoma progression by upregulating Dickkopf-1 (DKK1) [J]. Biochem Biophys Res Commun, 2020, 530(1): 47-53.
[14]
Liu W, Fu X, Li R. CNN1 regulates the DKK1/Wnt/β-catenin/c-myc signaling pathway by activating TIMP2 to inhibit the invasion, migration and EMT of lung squamous cell carcinoma cells [J]. Exp Ther Med, 2021, 22(2): 855.
[15]
Zhuang X, Zhang H, Li X, et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1 [J]. Nat Cell Biol, 2017, 19(10): 1274-1285.
[16]
Miao CG, Yang YY, He X, et al. Wnt signaling in liver fibrosis: progress, challenges and potential directions [J]. Biochimie, 2013, 95(12): 2326-2335.
[17]
Dees C, Schlottmann I, Funke R, et al. The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis [J]. Ann Rheum Dis, 2014, 73(6): 1232-1239.
[50]
Liu Z, Xiu Y, Qiu F, et al. Canonical Wnt Signaling Drives Myopia Development and Can Be Pharmacologically Modulated [J]. Invest Ophthalmol Vis Sci, 2021, 62(9): 21.
[51]
Li M, Yuan Y, Chen Q, et al. Expression of Wnt/β-Catenin Signaling Pathway and Its Regulatory Role in Type I Collagen with TGF-β1 in Scleral Fibroblasts from an Experimentally Induced Myopia Guinea Pig Model [J]. J Ophthalmol, 2016: 5126560.
[52]
Peng M, Wei Y, Zhang Z, et al. Increased Levels of DKK1 in Vitreous Fluid of Patients with Pathological Myopia and the Correlation between DKK1 Levels and Axial Length [J]. Curr Eye Res, 2020, 45(1): 104-110.
[53]
Lieven O, Rüther U. The Dkk1 dose is critical for eye development [J]. Dev Biol, 2011, 355(1): 124-137.
[1] 高建松, 陈晓晓, 冯婷, 包剑锋, 魏淑芳, 潘林. 基于超声瞬时弹性成像的多参数决策树模型评估慢性乙型肝炎患者肝纤维化等级[J]. 中华医学超声杂志(电子版), 2023, 20(09): 923-929.
[2] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[3] 许正文, 李振, 侯振扬, 苏长征, 朱彪. 富血小板血浆联合植骨治疗早期非创伤性股骨头坏死[J]. 中华关节外科杂志(电子版), 2023, 17(06): 773-779.
[4] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[5] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[6] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[7] 陈垚, 徐伯群, 高志慧. 改良式中间上入路根治术治疗甲状腺癌的有效性安全性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 619-622.
[8] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[9] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[10] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[11] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[12] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[13] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[14] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要