[1] |
Thong BY. Allergic conjunctivitis in Asia[J]. Asia Pac Allergy, 2017, 7(2): 57-64.
|
[2] |
Mashige KP. A review of the management of ocular allergy[J]. Curr Allergy Clin Im, 2015, 28(4): 275-281.
|
[3] |
Michailopoulos P, Almaliotis D, Georgiadou I, et al. Allergic conjunctivitis in patients with respiratory allergic symptoms: a retrospective study in Greece[J]. Med Hypothesis Discov Innov Ophthalmol, 2017, 6(1): 3-9.
|
[4] |
Liang Q, Li J, Zhang S, et al. Characterization of conjunctival microbiome dysbiosis associated with allergic conjunctivitis[J]. Allergy, 2020, 76(2): 596-600.
|
[5] |
张玲. 普拉洛芬对过敏性结膜炎患者的影响[J]. 吉林医学,2021,42(3):673-674.
|
[6] |
葛坚,王宁利. 眼科学[M]. 北京:人民卫生出版社,2016:177.
|
[7] |
陈家利,周华祥,蒋怡,等. 过敏性结膜炎中西医治疗进展[J].中国中医眼科杂志,2020,30(5):375-378.
|
[8] |
Chigbu D. The pathophysiology of ocular allergy: a review[J]. Contact Lens Anterio, 2009, 32(1): 3-15.
|
[9] |
León B, Ballesteros-Tato A. Modulating Th2 cell immunity for the treatment of asthma[J]. Front Immunol, 2021, 12: 637948.
|
[10] |
Iwasaki N, Terawaki S, Shimizu K, et al. Th2 cells and macrophages cooperatively induce allergic inflammation through histamine signaling[J]. PloS One, 2021, 16(3): e0248158.
|
[11] |
Lee HJ, Kim BM, Shin S, et al. Rapamycin attenuates Th2-driven experimental allergic conjunctivitis[J]. Clin Immunol, 2018, 190: 1-10.
|
[12] |
吴金环,郑宝勇,张理涛. 紫草素对特应性皮炎小鼠TSLP/OX40L通路及Th1/Th2平衡的影响[J]. 天津医药,2021,49(9):949-954.
|
[13] |
王静静,宋昕阳,钱友存. 白介素-17家族细胞因子的研究进展[J]. 生命科学,2016,28(2):170-181.
|
[14] |
Meng XT, Sh Y, Zhang H, et al. The role of Th17 cells and IL-17 in Th2 immune responses of allergic conjunctivitis[J]. J Ophthalmol, 2020: 1-9.
|
[15] |
蔡乐琪,李晔,柯婉仪. 过敏性结膜炎发病机制的研究进展[J].眼科学报,2022,37(4):342-347.
|
[16] |
张剑,王冬兰,闫冬梅. Th1-Th2-Th17细胞在实验性过敏性结膜炎中的作用研究[J].中国现代医学杂志,2016,26(15):32-37.
|
[17] |
Nascimento C, Fraga RR, de-Cássia-Rolim-Barbosa ALR, et al. Effects of anti-IL-17 on inflammation, remodeling, and oxidative stress in an experimental model of asthma exacerbated by LPS[J]. Front Immunol, 2017, 8: 1835.
|
[18] |
Lin L, Hur J, Ji YK, et al. Effect of the anti-IL-17 antibody on allergic inflammation in an obesity-related asthma model[J]. Korean J Intern Med, 2018, 33(6): 1210-1223.
|
[19] |
Yoshida H, Christopher A. The immunobiology of interleukin-27[J]. Annu Rev Immunol, 2015, 33: 417-43.
|
[20] |
Chen X, Deng R, Chi W, et al. IL-27 signaling deficiency develops Th17-enhanced Th2-dominant inflammation in murine allergic conjunctivitis model[J]. Allergy, 2019, 74(5): 910-921.
|
[21] |
Diveu C, McGeachy MJ, Boniface K, et al. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells[J]. J Immunol, 2009, 182(9): 5748-5756.
|
[22] |
Su X, Pan J, Bai F, et al. IL-27 attenuates airway inflammation in a mouse asthma model via the STAT1 and GADD45γ/p38 MAPK pathways[J]. J Transl Med, 2016, 14(1): 283.
|
[23] |
Kemter AM, Cathryn RN. Influences on allergic mechanisms through gut, lung, and skin microbiome exposures[J]. J Clin Investig, 2019, 129(4): 1483-1492.
|
[24] |
Liang Q, Li J, Zhang S, et al. Characterization of conjunctival microbiome dysbiosis associated with allergic conjunctivitis[J]. Allergy, 2021, 76(2): 596-600.
|
[25] |
Hirakata T, Yokomizo T, Matsuda A. The roles of omega-3 fatty acids and resolvins in allergic conjunctivitis[J]. Curr Opin Allergy Cl, 2019, 19(5): 517-525.
|
[26] |
Adhikary PP, Zheng T, Page B, et al. TSLP as druggable target-a silver-lining for atopic diseases[J]. Pharmacol Therapeut, 2021, 217: 107648.
|
[27] |
Han F, Guo H, Wang L, et al. TSLP produced by Aspergillus fumigatus-stimulated DCs promotes a Th17 response through the JAK/STAT signaling pathway in fungal keratitis[J]. Invest Ophth Vis Sci, 2020, 61(14): 24-24.
|
[28] |
Zhao H, Li M, Wang L, et al. Angiotensin Ⅱ induces TSLP via an AT1 receptor/NF-kappaB pathway, promoting Th17 differentiation[J]. Cell Physiol Biochem, 2012, 30: 1383-1397.
|
[29] |
Uphoff E, Cabieses B, Pinart M, et al. A systematic review of socioeconomic position in relation to asthma and allergic diseases[J]. Eur Respir J, 2015, 46(2): 364-374.
|
[30] |
Ganti KP, Mukherji A, Surjit M, et al. Similarities and differences in the transcriptional control of expression of the mouse TSLP gene in skin epidermis and intestinal epithelium[J]. Proc Natl Acad Sci USA, 2017, 114(6): E951-E960.
|
[31] |
Mitchell PD, O′Byrne PM. Biologics and the lung: TSLP and other epithelial cell-derived cytokines in asthma[J]. Pharmacol Therapeut, 2017, 169: 104-112.
|
[32] |
Kay AB. Allergy and allergic diseases: First of two parts[J]. New Engl J Med, 2001, 344(1): 30-37.
|
[33] |
Pattarini L, Trichot C, Bogiatzi S, et al. TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand[J]. J Exp Med, 2017, 214(5): 1529-1546.
|
[34] |
Wang Y, Le Y, Zhao W, et al. Short thymic stromal lymphopoietin attenuates toluene diisocyanate-induced airway inflammation and inhibits high mobility group box 1-receptor for advanced glycation end products and long thymic stromal lymphopoietin expression[J]. Toxicol Sci, 2017, 157(2): 276-290.
|
[35] |
孙琳. 烟曲霉菌角膜感染介导TSLP活化DCs诱导Th2型炎症反应的实验研究[D]. 济南:山东大学,2018.
|
[36] |
Kitajima M, Lee HC, Nakayama T, et al. TSLP enhances the function of helper type 2 cells[J]. Eur J Immunol, 2011, 41(7): 1862-1871.
|
[37] |
Joo S, Fukuyama Y, Park EJ, et al. Critical role of TSLP-responsive mucosal dendritic cells in the induction of nasal antigen-specific IgA response[J]. Mucosal Immunol, 2017, 10(4): 901-911.
|
[38] |
Zheng X, Ma P, Paiva CD, et al. TSLP and downstream molecules in experimental mouse allergic conjunctivitis[J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 3076-3082.
|
[39] |
Li DQ, Zhang L, Pflugfelder SC, et al. Short ragweed pollen triggers allergic inflammation through Toll-like receptor 4-dependent thymic stromal lymphopoietin/OX40 ligand/OX40 signaling pathways[J]. J Allergy Clin Immunol, 2011, 128(6): 1318-1325.
|
[40] |
宁婵慧,郑晓汾,李冰. 胸腺基质淋巴细胞生成素和白细胞介素-4在变应性结膜炎鼠模型中的促炎作用[J]. 中华实验眼科杂志,2017,35(9):811-815.
|
[41] |
Zheng X, Yao J, Li B. Expression of TSLP and downstream molecules IL-4, IL-5, and IL-13 on the eye surface of patients with various types of allergic conjunctivitis[J]. J Ophthalmol, 2016: 5072781.
|
[42] |
Li J, Zhang L, Chen X, et al. Pollen/TLR4 innate immunity signaling initiates IL-33/ST2/Th2 pathways in allergic inflammation[J]. Sci Rep, 2016, 6: 36150.
|
[43] |
Nabe T, Kijitani Y, Kitagawa Y, et al. Involvement of chymase in allergic conjunctivitis of guinea pigs[J]. Exp Eye Res, 2013, 113: 74-79.
|
[44] |
Kalangara JP, Vanijcharoenkarn K, Chisolm S, et al. Neuro-pathic pain and itch: mechanisms in allergic conjunctivitis[J]. Curr Opin Allergy Cl, 2022, 22(5): 298-303.
|
[45] |
Florent G, Schultze JL, Murray PJ, et al. New insights into the multidimensional concept of macrophage ontogeny, activation and function[J]. Nat Immunol, 2016, 17(1): 34-40.
|
[46] |
Saradna A, Do DC, Kumar S, et al. Macrophage polarization and allergic asthma[J]. Transl Res, 2018, 191: 1-14.
|
[47] |
Robbe P, Draijer C, Borg TR, et al. Distinct macrophage phenotypes in allergic and nonallergic lung inflammation[J]. Am J Physiol Lung C, 2015, 308(4): L358-L367.
|
[48] |
吴秀华,郑文洁. 巨噬细胞极化[J].中华临床免疫和变态反应杂志,2017,11(2):161-165.
|
[49] |
刘佳宁,王鑫雅,孙玥. 巨噬细胞极化对炎症性疾病影响的研究进展[J]. 生物化工,2020,6(1):112-115.
|
[50] |
Melgert BN, Hacken NH, Rutgers B, et al. More alternative activation of macrophages in lungs of asthmatic patients[J]. J Allergy Clin Immunol, 2011, 127(3): 831-833.
|
[51] |
Draijer C, Robbe P, Boorsma CE, et al. Characterization of macrophage phenotypes in three murine models of house-dust-mite-induced asthma[J]. Mediat Inflamm, 2013, 2013(5-6): 632049.
|
[52] |
Lou H, Huang Y, Chen H, et al. M2 macrophages correlated with symptom severity and promote type 2 inflammation in allergic rhinitis[J]. Allergy, 2019, 74(11): 2255-2257.
|
[53] |
Deng R, Chen X, Zhang Y, et al. Short ragweed pollen promotes M2 macrophage polarizationvia TSLP-TSLPR-OX40L signaling in allergic inflflammation[J]. Mucosal Immunol, 2019, 12(5): 1141-1149.
|
[54] |
阮静瑶,陈必成,张喜乐,等.巨噬细胞M1-M2极化的信号通路研究进展[J]. 免疫学志,2015,31(10):911-917.
|