切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (04) : 232 -236. doi: 10.3877/cma.j.issn.2095-2007.2022.04.008

综述

M2型巨噬细胞极化在胸腺基质淋巴细胞生成素及其下游分子诱导过敏性结膜炎发病机制中作用的研究进展
高欢1, 郑晓汾2,()   
  1. 1. 030001 太原,山西医科大学第一临床医学院2019级硕士研究生
    2. 030002 太原,山西省眼科医院角膜病科
  • 收稿日期:2021-08-06 出版日期:2022-08-28
  • 通信作者: 郑晓汾
  • 基金资助:
    山西省重点研发计划项目(201803D31183)

The role of M2 macrophage polarization in the pathogenesis of allergic conjunctivitis involving TSLP and its downstream molecules

Huan Gao1, Xiaofen Zheng2,()   

  1. 1. Master′s degree 2019, the First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, China
    2. Department of Keratology, Shanxi Eye Hospital, Taiyuan 030002, China
  • Received:2021-08-06 Published:2022-08-28
  • Corresponding author: Xiaofen Zheng
引用本文:

高欢, 郑晓汾. M2型巨噬细胞极化在胸腺基质淋巴细胞生成素及其下游分子诱导过敏性结膜炎发病机制中作用的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 232-236.

Huan Gao, Xiaofen Zheng. The role of M2 macrophage polarization in the pathogenesis of allergic conjunctivitis involving TSLP and its downstream molecules[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(04): 232-236.

过敏性结膜炎(AC)是人类眼表一种常见的过敏性疾病,发病原因复杂,主要是由免疫球蛋白E或T淋巴细胞介导的一种免疫反应。目前,过敏效应阶段细胞因子之间相互作用的分子机制已明确,但对过敏上游因子的了解却知之甚少。有研究结果表明,作为过敏上游因子的胸腺基质淋巴细胞生成素(TSLP)等具有启动和促过敏作用;此外,在短豚草花粉诱导实验性AC小鼠模型中已证实M2型巨噬细胞极化在辅助性T淋巴细胞2(Th2)显性过敏性炎症中有重要作用。目前,TSLP和M2型巨噬细胞在AC发病过程中的作用机制尚未完全阐明。因此,本文中笔者就M2型巨噬细胞极化在TSLP及其下游分子诱导AC发病机制中的作用进行综述。

Allergic conjunctivitis is a common allergic disease of human ocular surface. The causes of this disease are very complicated, mainly an immune response mediated by IgE or T lymphocytes. At present, the molecular mechanism of the interaction between cytokines in anaphylactic effect stage has been clearly demonstrated, but the understanding of the upstream factors of allergy is relatively poor. It has been demonstrated that thymic stromal lymphopoietin (TSLP) is one of the upstream factors of allergy, which has priming and pro-allergenic effects. In addition, macrophages have also been found to play an important role in the Th2 dominant allergic inflammation by polarizing the M2 phenotype in the pollen-induced experimental allergic conjunctivitis mouse model. Currently, the mechanism of TSLP and M2 macrophages in the pathogenesis of allergic conjunctivitis is not well understood. The role of M2 macrophage polarization in the pathogenesis of allergic conjunctivitis involving TSLP and its downstream molecules was reviewed in this paper.

图2 M2型巨噬细胞参与胸腺基质淋巴细胞生成素-胸腺基质淋巴细胞生成素受体-分化簇134配体途径的示意图
图3 胸腺基质淋巴细胞生成素及其下游分子参与过敏性结膜炎发病可能机制的示意图
[1]
Thong BY. Allergic conjunctivitis in Asia[J]. Asia Pac Allergy, 2017, 7(2): 57-64.
[2]
Mashige KP. A review of the management of ocular allergy[J]. Curr Allergy Clin Im, 2015, 28(4): 275-281.
[3]
Michailopoulos P, Almaliotis D, Georgiadou I, et al. Allergic conjunctivitis in patients with respiratory allergic symptoms: a retrospective study in Greece[J]. Med Hypothesis Discov Innov Ophthalmol, 2017, 6(1): 3-9.
[4]
Liang Q, Li J, Zhang S, et al. Characterization of conjunctival microbiome dysbiosis associated with allergic conjunctivitis[J]. Allergy, 2020, 76(2): 596-600.
[5]
张玲. 普拉洛芬对过敏性结膜炎患者的影响[J]. 吉林医学202142(3):673-674.
[6]
葛坚,王宁利. 眼科学[M]. 北京:人民卫生出版社,2016:177.
[7]
陈家利,周华祥,蒋怡,等. 过敏性结膜炎中西医治疗进展[J].中国中医眼科杂志202030(5):375-378.
[8]
Chigbu D. The pathophysiology of ocular allergy: a review[J]. Contact Lens Anterio, 2009, 32(1): 3-15.
[9]
León B, Ballesteros-Tato A. Modulating Th2 cell immunity for the treatment of asthma[J]. Front Immunol, 2021, 12: 637948.
[10]
Iwasaki N, Terawaki S, Shimizu K, et al. Th2 cells and macrophages cooperatively induce allergic inflammation through histamine signaling[J]. PloS One, 2021, 16(3): e0248158.
[11]
Lee HJ, Kim BM, Shin S, et al. Rapamycin attenuates Th2-driven experimental allergic conjunctivitis[J]. Clin Immunol, 2018, 190: 1-10.
[12]
吴金环,郑宝勇,张理涛. 紫草素对特应性皮炎小鼠TSLP/OX40L通路及Th1/Th2平衡的影响[J]. 天津医药202149(9):949-954.
[13]
王静静,宋昕阳,钱友存. 白介素-17家族细胞因子的研究进展[J]. 生命科学201628(2):170-181.
[14]
Meng XT, Sh Y, Zhang H, et al. The role of Th17 cells and IL-17 in Th2 immune responses of allergic conjunctivitis[J]. J Ophthalmol, 2020: 1-9.
[15]
蔡乐琪,李晔,柯婉仪. 过敏性结膜炎发病机制的研究进展[J].眼科学报202237(4):342-347.
[16]
张剑,王冬兰,闫冬梅. Th1-Th2-Th17细胞在实验性过敏性结膜炎中的作用研究[J].中国现代医学杂志201626(15):32-37.
[17]
Nascimento C, Fraga RR, de-Cássia-Rolim-Barbosa ALR, et al. Effects of anti-IL-17 on inflammation, remodeling, and oxidative stress in an experimental model of asthma exacerbated by LPS[J]. Front Immunol, 2017, 8: 1835.
[18]
Lin L, Hur J, Ji YK, et al. Effect of the anti-IL-17 antibody on allergic inflammation in an obesity-related asthma model[J]. Korean J Intern Med, 2018, 33(6): 1210-1223.
[19]
Yoshida H, Christopher A. The immunobiology of interleukin-27[J]. Annu Rev Immunol, 2015, 33: 417-43.
[20]
Chen X, Deng R, Chi W, et al. IL-27 signaling deficiency develops Th17-enhanced Th2-dominant inflammation in murine allergic conjunctivitis model[J]. Allergy, 2019, 74(5): 910-921.
[21]
Diveu C, McGeachy MJ, Boniface K, et al. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells[J]. J Immunol, 2009, 182(9): 5748-5756.
[22]
Su X, Pan J, Bai F, et al. IL-27 attenuates airway inflammation in a mouse asthma model via the STAT1 and GADD45γ/p38 MAPK pathways[J]. J Transl Med, 2016, 14(1): 283.
[23]
Kemter AM, Cathryn RN. Influences on allergic mechanisms through gut, lung, and skin microbiome exposures[J]. J Clin Investig, 2019, 129(4): 1483-1492.
[24]
Liang Q, Li J, Zhang S, et al. Characterization of conjunctival microbiome dysbiosis associated with allergic conjunctivitis[J]. Allergy, 2021, 76(2): 596-600.
[25]
Hirakata T, Yokomizo T, Matsuda A. The roles of omega-3 fatty acids and resolvins in allergic conjunctivitis[J]. Curr Opin Allergy Cl, 2019, 19(5): 517-525.
[26]
Adhikary PP, Zheng T, Page B, et al. TSLP as druggable target-a silver-lining for atopic diseases[J]. Pharmacol Therapeut, 2021, 217: 107648.
[27]
Han F, Guo H, Wang L, et al. TSLP produced by Aspergillus fumigatus-stimulated DCs promotes a Th17 response through the JAK/STAT signaling pathway in fungal keratitis[J]. Invest Ophth Vis Sci, 2020, 61(14): 24-24.
[28]
Zhao H, Li M, Wang L, et al. Angiotensin Ⅱ induces TSLP via an AT1 receptor/NF-kappaB pathway, promoting Th17 differentiation[J]. Cell Physiol Biochem, 2012, 30: 1383-1397.
[29]
Uphoff E, Cabieses B, Pinart M, et al. A systematic review of socioeconomic position in relation to asthma and allergic diseases[J]. Eur Respir J, 2015, 46(2): 364-374.
[30]
Ganti KP, Mukherji A, Surjit M, et al. Similarities and differences in the transcriptional control of expression of the mouse TSLP gene in skin epidermis and intestinal epithelium[J]. Proc Natl Acad Sci USA, 2017, 114(6): E951-E960.
[31]
Mitchell PD, O′Byrne PM. Biologics and the lung: TSLP and other epithelial cell-derived cytokines in asthma[J]. Pharmacol Therapeut, 2017, 169: 104-112.
[32]
Kay AB. Allergy and allergic diseases: First of two parts[J]. New Engl J Med, 2001, 344(1): 30-37.
[33]
Pattarini L, Trichot C, Bogiatzi S, et al. TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand[J]. J Exp Med, 2017, 214(5): 1529-1546.
[34]
Wang Y, Le Y, Zhao W, et al. Short thymic stromal lymphopoietin attenuates toluene diisocyanate-induced airway inflammation and inhibits high mobility group box 1-receptor for advanced glycation end products and long thymic stromal lymphopoietin expression[J]. Toxicol Sci, 2017, 157(2): 276-290.
[35]
孙琳. 烟曲霉菌角膜感染介导TSLP活化DCs诱导Th2型炎症反应的实验研究[D]. 济南:山东大学,2018.
[36]
Kitajima M, Lee HC, Nakayama T, et al. TSLP enhances the function of helper type 2 cells[J]. Eur J Immunol, 2011, 41(7): 1862-1871.
[37]
Joo S, Fukuyama Y, Park EJ, et al. Critical role of TSLP-responsive mucosal dendritic cells in the induction of nasal antigen-specific IgA response[J]. Mucosal Immunol, 2017, 10(4): 901-911.
[38]
Zheng X, Ma P, Paiva CD, et al. TSLP and downstream molecules in experimental mouse allergic conjunctivitis[J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 3076-3082.
[39]
Li DQ, Zhang L, Pflugfelder SC, et al. Short ragweed pollen triggers allergic inflammation through Toll-like receptor 4-dependent thymic stromal lymphopoietin/OX40 ligand/OX40 signaling pathways[J]. J Allergy Clin Immunol, 2011, 128(6): 1318-1325.
[40]
宁婵慧,郑晓汾,李冰. 胸腺基质淋巴细胞生成素和白细胞介素-4在变应性结膜炎鼠模型中的促炎作用[J]. 中华实验眼科杂志201735(9):811-815.
[41]
Zheng X, Yao J, Li B. Expression of TSLP and downstream molecules IL-4, IL-5, and IL-13 on the eye surface of patients with various types of allergic conjunctivitis[J]. J Ophthalmol, 2016: 5072781.
[42]
Li J, Zhang L, Chen X, et al. Pollen/TLR4 innate immunity signaling initiates IL-33/ST2/Th2 pathways in allergic inflammation[J]. Sci Rep, 2016, 6: 36150.
[43]
Nabe T, Kijitani Y, Kitagawa Y, et al. Involvement of chymase in allergic conjunctivitis of guinea pigs[J]. Exp Eye Res, 2013, 113: 74-79.
[44]
Kalangara JP, Vanijcharoenkarn K, Chisolm S, et al. Neuro-pathic pain and itch: mechanisms in allergic conjunctivitis[J]. Curr Opin Allergy Cl, 2022, 22(5): 298-303.
[45]
Florent G, Schultze JL, Murray PJ, et al. New insights into the multidimensional concept of macrophage ontogeny, activation and function[J]. Nat Immunol, 2016, 17(1): 34-40.
[46]
Saradna A, Do DC, Kumar S, et al. Macrophage polarization and allergic asthma[J]. Transl Res, 2018, 191: 1-14.
[47]
Robbe P, Draijer C, Borg TR, et al. Distinct macrophage phenotypes in allergic and nonallergic lung inflammation[J]. Am J Physiol Lung C, 2015, 308(4): L358-L367.
[48]
吴秀华,郑文洁. 巨噬细胞极化[J].中华临床免疫和变态反应杂志201711(2):161-165.
[49]
刘佳宁,王鑫雅,孙玥. 巨噬细胞极化对炎症性疾病影响的研究进展[J]. 生物化工20206(1):112-115.
[50]
Melgert BN, Hacken NH, Rutgers B, et al. More alternative activation of macrophages in lungs of asthmatic patients[J]. J Allergy Clin Immunol, 2011, 127(3): 831-833.
[51]
Draijer C, Robbe P, Boorsma CE, et al. Characterization of macrophage phenotypes in three murine models of house-dust-mite-induced asthma[J]. Mediat Inflamm, 2013, 2013(5-6): 632049.
[52]
Lou H, Huang Y, Chen H, et al. M2 macrophages correlated with symptom severity and promote type 2 inflammation in allergic rhinitis[J]. Allergy, 2019, 74(11): 2255-2257.
[53]
Deng R, Chen X, Zhang Y, et al. Short ragweed pollen promotes M2 macrophage polarizationvia TSLP-TSLPR-OX40L signaling in allergic inflflammation[J]. Mucosal Immunol, 2019, 12(5): 1141-1149.
[54]
阮静瑶,陈必成,张喜乐,等.巨噬细胞M1-M2极化的信号通路研究进展[J]. 免疫学志201531(10):911-917.
[1] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[2] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[3] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[4] 李永浩, 高雪菲, 郭田田, 张进, 张彩针, 刘静. 肥胖合并甲状腺癌相关机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 311-315.
[5] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[6] 熊风, 林辉煌, 陈晓波. 铥激光在泌尿外科中的临床应用及研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 533-536.
[7] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[8] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[9] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[10] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[11] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[12] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[13] 沈丘月, 侯新琳. n-3多不饱和脂肪酸脑保护机制研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 471-478.
[14] 李宁, 刘言, 林慧庆. 肺移植供肺缺血再灌注损伤的机制及预防[J]. 中华胸部外科电子杂志, 2023, 10(04): 247-256.
[15] 尹琛俊, 张喆, 李晓明. 卵圆孔未闭相关血栓形成机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 307-311.
阅读次数
全文


摘要