切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2021, Vol. 11 ›› Issue (05) : 262 -267. doi: 10.3877/cma.j.issn.2095-2007.2021.05.002

论著

视网膜动脉硬化分级与甘油三酯葡萄糖乘积指数相关性的临床研究
佘海澄1, 严棽棽1, 孙蓬飞2, 姜一梦2, 范芳芳3, 贾佳3, 张岩3,()   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 北京市眼科学与视觉科学重点实验室
    2. 100034 北京大学第一医院心内科
    3. 100034 北京大学第一医院心内科;100034 北京大学第一医院心血管疾病研究所
  • 收稿日期:2021-07-04 出版日期:2021-10-28
  • 通信作者: 张岩
  • 基金资助:
    首都卫生发展科研专项基金项目(首发2020-2-2053); 北京大学医学部-密歇根大学医学院转化医学与临床研究联合研究所和中央高校基本科研项目(BMU20110177、BMU20160530); 国家重点研发计划基金项目(2017YFC1307704); 中国心血管健康联盟进阶基金项目(2019-CCA-ACCEESS-112); 首都医科大学附属北京同仁医院青年人才培养计划种子基金项目(2018-YJJ-ZZL-031)

The relationship between triglyceride glucose index and retinal arteriosclerosis grading in a community-based population

Haicheng She1, Shenshen Yan1, Pengfei Sun2, Yimeng Jiang2, Fangfang Fan3, Jia Jia3, Yan Zhang3,()   

  1. 1. Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Lab., Beijing 100730, China
    2. Department of Cardiology, Peking University First Hospital, Beijing 100034, China
    3. Department of Cardiology, Peking University First Hospital, Beijing 100034, China; Institute of Cardiovascular Disease, Peking University First Hospital, Beijing 100034, China
  • Received:2021-07-04 Published:2021-10-28
  • Corresponding author: Yan Zhang
引用本文:

佘海澄, 严棽棽, 孙蓬飞, 姜一梦, 范芳芳, 贾佳, 张岩. 视网膜动脉硬化分级与甘油三酯葡萄糖乘积指数相关性的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(05): 262-267.

Haicheng She, Shenshen Yan, Pengfei Sun, Yimeng Jiang, Fangfang Fan, Jia Jia, Yan Zhang. The relationship between triglyceride glucose index and retinal arteriosclerosis grading in a community-based population[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2021, 11(05): 262-267.

目的

探讨视网膜动脉硬化分级与甘油三酯葡萄糖乘积指数(TyG)的相关性。

方法

选取"北京市石景山区社区动脉粥样硬化队列"中完成2019年12月至2020年1月随访,并具有完整彩色眼底照及TyG数据的764例患者为研究对象。其中,男性301例,女性463例。年龄33~86岁,平均年龄(62.3±7.3)岁。对所有患者以问卷调查采集一般信息,测量血压、身高、体重并计算体质指数(BMI),测定空腹血糖、口服葡萄糖耐量试验2 h血糖、甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)及血肌酐,计算肾小球滤过率(eGFR)及TyG指数,采集彩色眼底图像。依据Scheie原则对视网膜动脉硬化进行分级。按照TyG指数<9.272和≥9.272将全部患者分为两组。年龄、BMI、收缩压、血糖、HDL-C、LDL-C及eGFR以±s进行描述,并采用独立样本t检验比较组间差异;吸烟状况、合并疾病及用药情况采用频数和百分比描述,以χ2检验比较组间差异。采用多因素Logistic回归分析TyG指数与视网膜动脉硬化分级的相关性,调整因素包括性别、年龄、BMI、吸烟状态、SBP、HLD-C、LDL-C、eGFR、自述心血管疾病史、服用降脂药物、服用降糖药物及服用降压药。使用广义相加模型进行视网膜动脉硬化分级与TyG指数平滑曲线拟合。

结果

在764例患者中,合并高血压、脂代谢紊乱和糖尿病者分别为416例、598例和247例,分别占54.5%、78.3%和32.3%;现在吸烟者129例,占16.9%;空腹血糖为(6.4±1.9)mmol/L;TyG指数为8.9±0.6。与TyG<9.272组相比,TyG≥9.272组患者的BMI、收缩压、LDL-C及空腹血糖水平较高,其差异具有统计学意义(t=-3.855,-3.345,-5.928,-15.768;P<0.05);HDL-C水平较低,其差异具有统计学意义(t=7.266,P<0.05);合并高血压、脂代谢紊乱和糖尿病的比例较高,其差异具有统计学意义(χ2=6.333,57.723,119.71;P<0.05)。视网膜动脉硬化分级(0~1级与2~4级比较)与TyG指数呈正相关且检验具有统计学意义(r=0.11, P<0.05)。经多因素回归分析,TyG指数每升高1,3~4级较0~1级视网膜动脉硬化患病比例增加59%,其相关性具有统计学意义(OR=1.59,95%CI:1.02~2.49,P<0.05)。与TyG<9.3组相比,TyG≥9.3组患者视网膜动脉硬化3~4级较0~1级患病比例增加1.83倍,其相关性具有统计学意义(OR=2.83,95%CI:1.31~6.11,P<0.05)。

结论

高TyG指数与3~4级重度视网膜动脉硬化相关。

Objective

To investigate the relationship between triglyceride glucose index (TyG) and retinal arteriosclerosis grading in a community-based population.

Methods

764 subjects with fundus photograph and TyG data were included from December 2019 to January 2021 from an atherosclerosis cohort of Peking University First Hospital in Shijingshan District, Beijing. There were 301 male and 463 female with an average of (62.3±7.3) years-old (ranging from 33 to 86 years-old). General information was collected by questionnaire, blood pressure, height, weight, body mass index (BMI), fasting blood glucose, triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and creatinine were measured. Glomerular filtration rate (eGFR) and TyG index were calculated. Color fundus images were collected, and retinal arteriosclerosis was graded by experienced ophthalmologist according to Scheie′s classification. Subjects were divided into two groups according to TyG index (<9.272 and ≥9.272). Age, BMI, systolic blood pressure, blood glucose, HDL-C, LDL-C and eGFR were described by ±s, and t test was used to compare the differences between groups. Smoking status, concomitant diseases and medication were described by frequency and percentage, and Chi-square test was used to compare differences between groups. Multivariate logistic regression was used to analyze the correlation between TyG index and retinal arteriosclerosis grading, adjusted for factors including gender, age, BMI, smoking status, systolic blood pressure, HLD-C, LDL-C, eGFR, cardiovascular diseases history, use of lipid-lowering drugs, hypoglycemic drugs and antihypertensive drugs. The generalized additive model was used to fit the grading of retinal arteriosclerosis and the smooth curve of TYG index.

Results

Among of 764 subjects, 416 (54.5%), 598 (78.3%) and 247 (32.3%) had hypertension, dyslipidemia and diabetes mellitus, respectively. 129 (16.9%) were current smokers, the fasting blood glucose were (6.4±1.9)mmol/L, and the TyG index was 8.9±0.6. Compared with subjects with TyG<9.272, subjects with TyG≥9.272 had higher BMI, systolic blood pressure, LDL-C, fasting blood glucose, lower levels of HDL-C, a higher fasting blood glucose, and lower HDL-C with the significant difference (t=-3.855, -3.345, -5.928, -15.768, 7.266; P<0.05); hypertension, dyslipidemia and diabetes mellitus with the significant difference (χ2=6.333, 57.723, 119.71; P<0.05). The retinal arteriosclerosis grade (0—1 and 2—4) had the positive correlation with TyG index (r=0.11, P<0.05). Multivariate logistic regression analysis showed that retinal arteriosclerosis grade 3—4 increased 59% compared to grade 0—1 for every 1 increase of TyG (OR=1.59, 95%CI: 1.02 to 2.49, P<0.05). Compared with TyG groups (TyG<9.3), the incidence of retinal arteriosclerosis grade 3—4 increased by 183% (TyG≥9.3) (OR=2.83, 95%CI: 1.31 to 6.11, P<0.05).

Conclusions

High TyG index is associated with grade 3—4 severe retinal arteriosclerosis.

表1 研究对象基本特征的比较
组别 例数 年龄(±s,岁) 女性[例(%)] BMI(±s,kg/m2) 收缩压(±s,mmHg) TG (mmol/L) TC (mmol/L)
总体 764 62.3±7.3 463(60.6) 26.2±3.5 132.1±17.9 1.4 [1.0, 2.0] 5.2 (1.1)
TyG<9.272 573 62.5±7.4 356(62.1) 25.9±3.6 130.9±17.7 1.2 [0.9, 1.6] 5.1 (1.0)
TyG≥9.272 191 61.7±7.1 107(56.0) 27.0±3.1 135.9±18.2 2.6 [2.2, 3.4] 5.7 (1.2)
t/χ2   1.243# 2.239* -3.855# -3.345# 349.35* -7.199*
P   >0.05 >0.05 <0.05 <0.05 <0.05 <0.05
组别 例数 HDL-C(±s,mmol/L) LDL-C(±s,mmol/L) GLU(±s,mmol/L) eGFR(±s,mL/min/1.73 m2) 从不吸烟[例(%)] 曾经吸烟[例(%)] 现在吸烟[例(%)]
总体 764 1.4±0.3 3.2±0.8 6.4±1.9 94.7±11.6 578(75.8) 56(7.3) 129(16.9)
TyG<9.272 573 1.5±0.3 3.1±0.8 5.8±1.1 94.5±11.5 442(77.3) 42(7.3) 88(15.4)
TyG≥9.272 191 1.3±0.3 3.5±0.8 8.0±2.8 95.3±11.9 136(71.2) 14(7.3) 41(21.5)
t/χ2   7.266# -5.928# -15.768# -0.821#   3.828**  
P   <0.05 <0.05 <0.05 >0.05   >0.05  
组别 例数 合并高血压[例(%)] 合并脂代谢紊乱[例(%)] 合并糖尿病[例(%)] 合并心血管疾病[例(%)] 服用降糖药[例(%)] 服用降脂药[例(%)] 服用降压药[例(%)]
总体 764 416(54.5) 598(78.3) 247(32.3) 88 (11.5) 151(19.8) 146(19.1) 265(34.7)
TyG<9.272 573 297(51.8) 411(71.7) 124(21.6) 64 (11.2) 74(12.9) 96(16.8) 181(31.6)
TyG≥9.272 191 119(62.3) 187(97.9) 123(64.4) 24 (12.6) 77(40.3) 50(26.2) 84(44.0)
t/χ2   6.333* 57.723* 119.71* 0.266* 67.608* 8.168* 9.612*
P   <0.05 <0.05 <0.05 >0.05 <0.05 <0.05 <0.05
图1 视网膜动脉硬化分级与甘油三酯葡萄糖乘积指数的平滑曲线图
表2 Logistic回归分析视网膜动脉硬化分级(0~1级与2级比较及0~1级与3~4级比较)与甘油三酯葡萄糖乘积指数的相关性[例(%)]
视网膜动脉硬化分级 例数与占比 TyG每升高1 LnTyG每升高0.1 TyG四等分组<8.5 TyG四等分组8.5~8.8
0~1级 423(55.4) 423(55.4) 423(55.4) 121(63.4) 107(56.0)
2级 292(38.2) 292(38.2) 292(38.2) 60(31.4) 73(38.2)
3~4级 49(6.4) 49(6.4) 49(6.4) 10(5.2) 11(5.8)
OR (95%CI) 2级与0~1级单因素分析   1.43(1.12,1.81) 1.39(1.12,1.73) 参考 1.38(0.90,2.11)
P2级与0~1级单因素分析   <0.05 <0.05 参考 >0.05
OR (95%CI)3~4级与0~1级单因素分析   1.69(1.08,2.62) 1.61(1.07,2.44) 参考 1.24(0.51,3.04)
P3-4级与0~1级单因素分析   <0.05 <0.05 参考 >0.05
OR (95%CI)2级与0~1级多因素分析   1.24(0.93,1.66) 1.23(0.94,1.60) 参考 1.23(0.77,1.95)
P2级与0~1级多因素分析   >0.05 >0.05 参考 >0.05
OR (95%CI)3~4级与0~1级多因素分析   1.57(1.00,2.47) 1.50(1.18,1.89) 参考 0.83(0.30,2.30)
P3~4级与0~1级多因素分析   <0.05 <0.05 参考 >0.05
视网膜动脉硬化分级 例数与占比 TyG四等分组8.8~9.3 TyG四等分组≥9.3 TyG<9.3 TyG≥9.3
0~1级 423(55.4) 107(56.0) 88(46.1) 335(58.5) 88(46.1)
2级 292(38.2) 76(39.8) 83(43.5) 209(36.5) 83(43.5)
3~4级 49(6.4) 8(4.2) 20(10.5) 29(5.1) 20(10.5)
OR (95%CI) 2级与0~1级单因素分析   1.43(0.93,2.20) 1.90(1.24,2.93) 参考 1.51(1.07,2.14)
P2级与0~1级单因素分析   >0.05 <0.05 参考 <0.05
OR (95%CI)3~4级与0~1级单因素分析   0.90(0.34,2.38) 2.75(1.23,6.16) 参考 2.63(1.42,4.86)
P3-4级与0~1级单因素分析   >0.05 <0.05 参考 <0.05
OR (95%CI)2级与0~1级多因素分析   1.22(0.76,1.97) 1.53(0.90,2.60) 参考 1.29(0.86,1.92)
P2级与0~1级多因素分析   >0.05 >0.05 参考 >0.05
OR (95%CI)3~4级与0~1级多因素分析   0.69(0.24,2.02) 2.24(0.78,6.48) 参考 2.80(1.29,6.08)
P3~4级与0~1级多因素分析   >0.05 >0.05 参考 <0.05
[1]
韩超. 高血压前期与胰岛素抵抗相关性研究进展[J]. 心血管病学进展201536(2):138-141.
[2]
Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects[J]. Metab Syndr Relat Disord, 2008, 6(4): 299-304.
[3]
Sánchez-íñigo L, Navarro-González D, Fernández-Montero A, et al. The TyG index may predict the development of cardiovascular events[J]. Eur J Clin Invest, 2016, 46(2): 189-197.
[4]
Fan F, Qi L, Jia J, et al. Noninvasive Central Systolic Blood Pressure Is More Strongly Related to Kidney Function Decline Than Peripheral Systolic Blood Pressure in a Chinese Community-Based Population[J]. Hypertension, 2016, 67(6): 1166-1172.
[5]
Scheie HG. Evaluation of ophthalmoscopic changes of hypertension and arteriolar sclerosis[J]. AMA Arch Ophthalmol, 1953, 49(2): 117-138.
[6]
Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited[J]. Arterioscler Thromb Vasc Biol, 2004, 24(5): 816-823.
[7]
中华医学会糖尿病学会分会胰岛素抵抗学组(筹). 胰岛素抵抗评估方法和应用的专家指导意见[J]. 中华糖尿病杂志201810(6):377-385.
[8]
DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance[J]. Am J Physiol, 1979, 237(3): e214-e223.
[9]
Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man[J]. Diabetologia, 1985, 28(7): 412-419.
[10]
Katsuki A, Sumida Y, Gabazza EC, et al. Homeostasis model assessment is a reliable indicator of insulin resistance during follow-up of patients with type 2 diabetes[J]. Diabetes Care, 2001, 24(2): 362-365.
[11]
Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans[J]. J Clin Endocrinol Metab, 2000, 85(7): 2402-2410.
[12]
McAuley KA, Williams SM, Mann JI, et al. Diagnosing insulin resistance in the general population[J]. Diabetes Care, 2001, 24(3): 460-464.
[13]
Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp[J]. J Clin Endocrinol Metab, 2010, 95(7): 3347-3351.
[14]
赵茜,张巧. 新诊断2型糖尿病患者胰岛素抵抗指数、空腹甘油三酯及葡萄糖简易指数、空腹血糖/空腹胰岛素与正常血糖高胰岛素钳夹试验的一致性分析[J]. 中国糖尿病杂志201725(12):1083-1085.
[15]
Khan SH, Sobia F, Niazi NK, et al. Metabolic clustering of risk factors: evaluation of Triglyceride-glucose index (TyG index) for evaluation of insulin resistance[J]. Diabetol Metab Syndr, 2018, 10: 74.
[16]
Vasques AC, Novaes FS, de Oliveira Mda S, et al. TyG index performs better than HOMA in a Brazilian population: a hyperglycemic clamp validated study[J]. Diabetes Res Clin Pract, 2011, 93(3): e98-e100.
[17]
Jin JL, Cao YX, Wu LG, et al. Triglyceride glucose index for predicting cardiovascular outcomes in patients with coronary artery disease[J]. J Thorac Dis, 2018, 10(11): 6137-6146.
[18]
Jin JL, Sun D, Cao YX, et al. Triglyceride glucose and haemoglobin glycation index for predicting outcomes in diabetes patients with new-onset, stable coronary artery disease: a nested case-control study[J]. Ann Med, 2018, 50(7): 576-586.
[19]
Li S, Guo B, Chen H, et al. The role of the triglyceride (triacylglycerol) glucose index in the development of cardiovascular events: a retrospective cohort analysis[J]. Sci Rep, 2019, 9(1): 7320.
[20]
Wong TY, Klein R, Klein BE, et al. Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality[J]. Surv Ophthalmol, 2001, 46(1): 59-80.
[21]
Wong TY, Mitchell P. The eye in hypertension[J]. Lancet, 2007, 369(9559): 425-435.
[22]
Seidelmann SB, Claggett B, Bravo PE, et al. Retinal Vessel Calibers in Predicting Long-Term Cardiovascular Outcomes: The Atherosclerosis Risk in Communities Study[J]. Circulation, 2016, 134(18): 1328-1338.
[23]
Yuan Y, Ikram MK, Vingerling JR, et al. Retinal vascular caliber and metabolic syndrome in a Chinese population[J]. Intern Med J, 2012, 42(9): 1014-1022.
[24]
McGeechan K, Liew G, Macaskill P, et al. Risk prediction of coronary heart disease based on retinal vascular caliber from the Atherosclerosis Risk In Communities (ARIC) Study[J]. Am J Cardiol, 2008, 102(1): 58-63.
[25]
Xu X, Sun F, Wang Q, et al. Comprehensive retinal vascular measurements: a novel association with renal function in type 2 diabetic patients in China[J]. Sci Rep, 2020, 10(1): 13737.
[26]
Lee SB, Ahn CW, Lee BK, et al. Association between triglyceride glucose index and arterial stiffness in Korean adults[J]. Cardiovasc Diabetol, 2018, 17(1): 41.
[27]
Zhao S, Yu S, Chi C, et al. Association between macro- and microvascular damage and the triglyceride glucose index in community-dwelling elderly individuals: the Northern Shanghai Study[J]. Cardiovasc Diabetol, 2019, 18(1): 95.
[28]
Soleimani M. Insulin resistance and hypertension: new insights[J]. Kidney Int, 2015, 87(3): 497-499.
[29]
Di Pino A, DeFronzo RA. Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents[J]. Endocr Rev, 2019, 40(6): 1447-1467.
[30]
Reardon CA, Lingaraju A, Schoenfelt KQ, et al. Obesity and Insulin Resistance Promote Atherosclerosis through an IFNγ-Regulated Macrophage Protein Network[J]. Cell Rep, 2018, 23(10): 3021-3030.
[1] 周茂平, 滕鑫, 张云, 王宏桥. 2型糖尿病患者肝肾回声比值与血清学指标的相关性[J]. 中华医学超声杂志(电子版), 2015, 12(06): 467-471.
[2] 蔡学英, 陈嘉伊, 曾龙欢, 王剑荣, 朱英, 胡炜. 妊娠期高甘油三酯性急性胰腺炎临床特征分析:10年单中心回顾性分析[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 393-399.
[3] 王石, 王劲, 李婷婷, 王丹, 曾凌空. DGAT1基因突变所致先天性腹泻与肠病临床分析并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 192-197.
[4] 周巧莲, 李琴. 血清补体C1q肿瘤坏死因子相关蛋白3、亲环素A与子痫前期患者脂代谢异常的相关性研究[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(04): 382-388.
[5] 韩肖燕, 杨惠霞, 杨桦. 妊娠期糖尿病孕妇晚孕期血脂浓度检测的临床意义[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(01): 14-18.
[6] 田海荣, 季业, 黄忠华, 钱欢, 汤仙娥, 李自云, 沈英娣, 金治娟, 刘波, 刘芳. 上海朱泾地区孕妇不同孕期空腹血糖及晚孕期糖化血红蛋白特点分析[J]. 中华妇幼临床医学杂志(电子版), 2018, 14(03): 311-316.
[7] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[8] 严舒, 李勇, 范婧妍, 吴妮莎, 周国俊, 李建水, 冷政伟. 高甘油三酯血症急性胰腺炎与胆源性急性胰腺炎临床特征比较[J]. 中华肝脏外科手术学电子杂志, 2020, 09(05): 445-448.
[9] 尉秀清, 林颖, 何卉欣, 蒋梦萍, 吴斌. CD36在小鼠非酒精性脂肪性肝病形成中的意义[J]. 中华肝脏外科手术学电子杂志, 2014, 03(02): 112-116.
[10] 彭熙, 李晓华, 马云华, 吴悦, 农凤伟, 廖蕴华. 不同类型血脂异常对IgA肾病临床及病理特征的影响[J]. 中华肾病研究电子杂志, 2016, 05(05): 214-217.
[11] 任忠梅, 张安新, 邢春丽. 急性缺血性脑卒中患者血清因子、肺功能变化及其与阻塞型睡眠呼吸暂停综合征的关系[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(03): 137-141.
[12] 张梅玉, 吴胜利, 向蔚婷, 孙克红, 李农. 体检人群甘油三酯葡萄糖指数对非酒精性脂肪性肝病发病风险的诊断价值[J]. 中华诊断学电子杂志, 2022, 10(03): 152-157.
[13] 黄丽红, 萧鲲, 张翠玲, 江妙玲, 余敏. 基于血糖检验指标及聚类分析构建门诊精神分裂症患者分类判别预测模型[J]. 中华肥胖与代谢病电子杂志, 2021, 07(01): 24-29.
[14] 李龙, 李宇, 周岩冰, 卢存龙. 胃旁路术后IRS-1和IRS-2的表达变化对糖尿病大鼠空腹血糖和胰岛素抵抗的影响及作用机制[J]. 中华肥胖与代谢病电子杂志, 2016, 02(04): 219-224.
阅读次数
全文


摘要