切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2020, Vol. 10 ›› Issue (05) : 316 -320. doi: 10.3877/cma.j.issn.2095-2007.2020.05.011

综述

血管内皮生长因子对晶状体影响的研究进展
刘泽晗1, 朱丹2,()   
  1. 1. 010020 呼和浩特,内蒙古医科大学第一临床医学院2018级硕士研究生
    2. 010020 呼和浩特,内蒙古医科大学附属医院眼科
  • 收稿日期:2020-04-27 出版日期:2020-10-28
  • 通信作者: 朱丹
  • 基金资助:
    国家科技重大专项基金项目(2018ZX10101004); 国家自然科学基金项目(81860178)

Recent advances on the effect of vascular endothelial growth factor to human lens

Zehan Liu1, Dan Zhu2,()   

  1. 1. Master′s degree 2018, the First Clinical Medical School, Inner Mongolia Medical University, Hohhot 010020, China
    2. Department of Ophthalmology, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010020, China
  • Received:2020-04-27 Published:2020-10-28
  • Corresponding author: Dan Zhu
引用本文:

刘泽晗, 朱丹. 血管内皮生长因子对晶状体影响的研究进展[J]. 中华眼科医学杂志(电子版), 2020, 10(05): 316-320.

Zehan Liu, Dan Zhu. Recent advances on the effect of vascular endothelial growth factor to human lens[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2020, 10(05): 316-320.

血管内皮生长因子(VEGF)是一种促血管生成因子,在许多病理性血管生成的眼部疾病中起着重要作用。目前,VEGF已成为许多疾病的治疗靶点。然而,现有研究更多关注VEGF在富含血管组织中的作用,忽略了它在非血管组织中的影响。本文中笔者将VEGF-A对晶状体胚胎血管和晶状体大小的影响,以及VEGF-A在年龄相关性白内障、糖尿病性白内障和白内障术后后囊膜混浊等疾病中的作用进行综述,旨在分析VEGF-A对晶状体的影响机制,以期为相关的临床研究提供理论依据。

Vascular endothelial growth factor (VEGF) has been the treatment target of many eye diseases because of its key role in pathological angiogenesis as a pro-angiogenic factor. More attention has been paid to its role in tissues with rich invessels, but not to those lack of vessels. As an important refractive media in the eye, the lens is short of vascular tissues. In this paper, the effect of VEGF-A on embryonic vasculature of human lens, age-related cataract, diabetic cataract and posterior capsule opacification were reviewed so as to analyze the effect of VEGF-A on human lens and its possible mechanism, as well as to provide the oretical basis for relevant clinical studies.

图1 血管内皮生长因子配体及其对应受体示意图
表1 缺氧环境与缺氧诱导因子-1α对晶状体的作用及机制
图2 内皮细胞中血管内皮生长因子与血管内皮生长因子配体-1-血管内皮生长因子配体-2结合的部分信号通路示意图
[1]
Neelam S, Brooks MM, Cammarata PR. Lenticular cytoprotection. Part 1: the role of hypoxia inducible factors-1α and -2α and vascular endothelial growth factor in lens epithelial cell survival in hypoxia[J]. Mol Vis, 2013, 19: 1-15.
[2]
Mitchell CA, Risau W, Drexler HC. Regression of vessels in the tunica vasculosa lentis is initiated by coordinated endothelial apoptosis: a role for vascular endothelial growth factor as a survival factor for endothelium[J]. Dev Dyn, 1998, 213(3): 322-333.
[3]
Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies[J]. Genes Cancer, 2011, 2(12): 1097-1105.
[4]
Witmer AN, Vrensen GFJM, Van Noorden CJF, et al. Vascular endothelial growth factors and angiogenesis in eye disease[J]. Prog Retin Eye Res, 2003, 22(1): 1-29.
[5]
Tolentino M. Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease[J]. Surv Ophthalmol, 2011, 56(2): 95-113.
[6]
Amoaku WM, Chakravarthy U, Gale R, et al. Defining response to anti-VEGF therapies in neovascular AMD[J]. Eye, 2015, 29(6): 721-731.
[7]
Shui YB, Wang X, Hu JS, et al. Vascular endothelial growth factor expression and signaling in the lens[J]. Invest Ophthalmol Vis Sci, 2003, 44(9): 3911-3919.
[8]
Ferrara N, Gerber HP, Lecouter J. The biology of VEGF and its receptors[J]. Nat Med, 2003, 9(6): 669-676.
[9]
Holmes K, Roberts OL, Thomas AM, et al. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition[J]. Cell Signal, 2007, 19(10): 2003-2012.
[10]
Usui T, Ishida S, Yamashiro K, et al. VEGF164 (165) as the pathological isoform: differential leukocyte and endothelial responses through VEGFR1 and VEGFR2[J]. Invest Ophthalmol Vis Sci, 2004, 45(2): 368-374.
[11]
Muthusamy A, Lin CM, Shanmugam S, et al. Ischemia-reperfusion injury induces occludin phosphorylation/ubiquitination and retinal vascular permeability in a VEGFR-2-dependent manner[J]. J Cereb Blood Flow Metab, 2014, 34(3): 522-531.
[12]
Kim M, Lee C, Payne R, et al. Angiogenesis in glaucoma filtration surgery and neovascular glaucoma: A review[J]. Surv Ophthalmol, 2015, 60(6): 524-535.
[13]
Miranda-Cruz MM, Poom-Llamas JJ, Godoy-Lugo JA, et al. Silencing of HIF-1 in WSSV-infected white shrimp: effect on viral load and antioxidant enzymes[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2018, 213: 19-26.
[14]
Tolentino M. Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease[J]. Surv Ophthalmol, 2011, 56(2): 95-113.
[15]
Shui YB, Arbeit JM, Johnson RS, et al. HIF-1: an age-dependent regulator of lens cell proliferation[J]. Invest Ophthalmol Vis Sci, 2008, 49(11): 4961-4970.
[16]
Chen Y, Doughman YQ, Gu S, et al. Cited2 is required for the proper formation of the hyaloid vasculature and for lens morphogenesis[J]. Development, 2008, 135(17): 2939-2948.
[17]
Baba K, Muraguchi T, Imaoka S. Role of the hypoxia response pathway in lens formation during embryonic development of Xenopus laevis[J]. FEBS Open Bio, 2013, 3: 490-495.
[18]
Goralska M, Fleisher LN, Mcgahan MC. Hypoxia induced changes in expression of proteins involved in iron uptake and storage in cultured lens epithelial cells[J]. Exp Eye Res, 2014, 125: 135-141.
[19]
Chen Y, Wu Q, Miao A, et al. Effect of HSF4b on age related cataract may through its novel downstream target HIF-1α[J]. Biochem Biophys Res Commun, 2014, 453(3): 674-678.
[20]
Han X, Wang XL, Li Q, et al. HIF-1alpha SUMOylation affects the stability and transcriptional activity of HIF-1alpha in human lens epithelial cells[J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(8): 1279-1290.
[21]
Cammarata PR, Neelam S, Brooks MM. Inhibition of hypoxia inducible factor-1α downregulates the expression of epithelial to mesenchymal transition early marker proteins without undermining cell survival in hypoxic lens epithelial cells[J]. Mol Vis, 2015, 21: 1024-1035.
[22]
Nahomi RB, Nagaraj RH. The role of HIF-1α in the TGF-β2-mediated epithelial-to-mesenchymal transition of human lens epithelial cells[J]. J Cell Biochem, 2018, 119(8): 6814-6827.
[23]
Ferrara N, Gerber HP, Lecouter J. The biology of VEGF and its receptors[J]. Nat Med, 2003, 9(6): 669-676.
[24]
Matsumoto K, Ohi H, Kanmatsuse K. Interleukin 10 and interleukin 13 synergize to inhibit vascular permeability factor release by peripheral blood mononuclear cells from patients with lipoid nephrosis[J]. Nephron, 1997, 77(2): 212-218.
[25]
Okada F, Rak JW, Croix BS, et al. Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor-vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells[J]. Proc Natl Acad Sci USA, 1998, 95(7): 3609-3614.
[26]
Levy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia[J]. J Biol Chem, 1996, 271(5): 2746-2753.
[27]
Larrivee B, Karsan A. Signaling pathways induced by vascular endothelial growth factor (review)[J]. Int J Mol Med, 2000, 5(5): 447-456.
[28]
Zhu M, Madigan MC, van Driel D, et al. The human hyaloid system: cell death and vascular regression[J]. Exp Eye Res, 2000, 70(6): 767-776.
[29]
Ito M, Yoshioka M. Regression of the hyaloid vessels and pupillary membrane of the mouse[J]. Anat Embryol (Berl), 1999, 200(4): 403-411.
[30]
Martin AC, Thornton JD, Liu J, et al. Pathogenesis of persistent hyperplastic primary vitreous in mice lacking the arf tumor suppressor gene[J]. Invest Ophthalmol Vis Sci, 2004, 45(10): 3387-3396.
[31]
Gilbert RE, Vranes D, Berka JL, et al. Vascular endothelial growth factor and its receptors in control and diabetic rat eyes[J]. Lab Invest, 1998, 78(8): 1017-1027.
[32]
Gogat K, Gat LL, Berghe LVD, et al. VEGF and KDR gene expression during human embryonic and fetal eye development[J]. Invest Ophthalmol Vis Sci, 2004, 45(1): 7-14.
[33]
Mitchell CA, Rutland CS, Walker M, et al. Unique vascular phenotypes following over-expression of individual VEGFA isoforms from the developing lens[J]. Angiogenesis, 2006, 9(4): 209-224.
[34]
Feeney SA, Simpson DAC, Gardiner TA, et al. Role of vascular endothelial growth factor and placental growth factors during retinal vascular development and hyaloid regression[J]. Invest Ophthalmol Vis Sci, 2003, 44(2): 839-847.
[35]
Saint-Geniez M, Kurihara T, D′Amore PA. Role of cell and matrix-bound VEGF isoforms in lens development[J]. Invest Ophthalmol Vis Sci, 2009, 50(1): 311-321.
[36]
Keel S, He M. Risk factors for age-related cataract[J]. Clin Exp Ophthalmol, 2018, 46(4): 327-328.
[37]
Rajkumar S, Vasavada AR, Praveen MR, et al. Exploration of molecular factors impairing superoxide dismutase isoforms activity in human senile cataractous lenses[J]. Invest Ophthalmol Vis Sci, 2013, 54(9): 6224-6233.
[38]
Wang S, Guo C, Yu M, et al. Identification of H2O2 induced oxidative stress associated microRNAs in HLE-B3 cells and their clinical relevance to the progression of age-related nuclear cataract[J]. BMC Ophthalmol, 2018, 18(1): 93.
[39]
Marneros AG. NLRP3 inflammasome blockade inhibits VEGF-A-induced age-related macular degeneration[J]. Cell Rep, 2013, 4(5): 945-958.
[40]
Marneros AG. Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms[J]. EMBO Mol Med, 2016, 8(3): 208-231.
[41]
Ahmad A, Ahsan H. Biomarkers of inflammation and oxidative stress in ophthalmic disorders[J]. J Immunoassay Immunochem, 2020, 41(3): 257-271.
[42]
Augusteyn RC. Growth of the human eye lens[J]. Mol Vis, 2007, 13: 252-257.
[43]
Goda N, Ryan HE, Khadivi B, et al. Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia[J]. Mol Cell Biol, 2003, 23(1): 359-369.
[44]
Lin C, Mcgough R, Aswad B, et al. Hypoxia induces HIF-1alpha and VEGF expression in chondrosarcoma cells and chondrocytes[J]. J Orthop Res, 2004, 22(6): 1175-1181.
[45]
Klein BE, Klein R, Moss SE. Lens thickness and five-year cumulative incidence of cataracts: the beaver dam eye study[J]. Ophthalmic Epidemiol, 2000, 7(4): 243-248.
[46]
Vieira-Potter VJ, Karamichos D, Lee DJ. Ocular complications of diabetes and therapeutic approaches[J]. Biomed Res Int, 2016: 3801570.
[47]
Mitroviĉ S, Kelava T, Šuĉur A, et al. Levels of selected aqueous humor mediators (IL-10, IL-17, CCL2, VEGF, FasL) in diabetic cataract[J]. Ocul Immunol Inflamm, 2016, 24(2): 159-166.
[48]
Caldwell RB, Bartoli M, Behzadian MA, et al. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives[J]. Diabetes Metab Res Rev, 2003, 19(6): 442-455.
[49]
Bressler SB. Introduction: Understanding the role of angiogenesis and antiangiogenic agents in age-related macular degeneration[J]. Ophthalmology, 2009, 116(10): S1-S7.
[50]
Paulus YM, Sodhi A. Anti-angiogenic therapy for retinal disease[J]. Handb Exp Pharmacol, 2017, 242: 271-307.
[51]
Bessa AS, Ragab AM, Nassra RA, et al. Expression levels of aldose reductase enzyme, vascular endothelial growth factor, and intercellular adhesion molecule-1 in the anterior lens capsule of diabetic cataract patients[J]. J Cataract Refract Surg, 2018, 44(12): 1431-1435.
[52]
Cvitkovic K, Sesar A, Sesar I, et al. Concentrations of selected cytokines and vascular endothelial growth factor in aqueous humor and serum of diabetic patients[J]. Semin Ophthalmol, 2020, 35(2): 1-8.
[53]
Liu H, Smith AJ, Ball SB, et al. Sulforaphane promotes ER stress, autophagy, and cell death: implications for cataract surgery[J]. J Mol Med, 2017, 95(5): 553-564.
[54]
Wormstone IM. Posterior capsule opacification: a cell biological perspective[J]. Exp Eye Res, 2002, 74(3): 337-347.
[55]
Alon R, Assia EI, Kleinmann G. Prevention of posterior capsule opacification by an intracapsular open capsule device[J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4005-4013.
[56]
Eldred JA, Mcdonald M, Wilkes HS, et al. Growth factor restriction impedes progression of wound healing following cataract surgery: identification of VEGF as a putative therapeutic target[J]. Sci Rep, 2016, 6: 24453.
[1] 赵超, 郑超, 周健. 永存胚胎血管的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 352-356.
[2] 刘燕, 蒋永祥. 重视超声乳化白内障吸除联合人工晶状体植入术后后囊膜混浊的危险因素及预防[J]. 中华眼科医学杂志(电子版), 2020, 10(06): 321-325.
阅读次数
全文


摘要