[1] |
Neelam S, Brooks MM, Cammarata PR. Lenticular cytoprotection. Part 1: the role of hypoxia inducible factors-1α and -2α and vascular endothelial growth factor in lens epithelial cell survival in hypoxia[J]. Mol Vis, 2013, 19: 1-15.
|
[2] |
Mitchell CA, Risau W, Drexler HC. Regression of vessels in the tunica vasculosa lentis is initiated by coordinated endothelial apoptosis: a role for vascular endothelial growth factor as a survival factor for endothelium[J]. Dev Dyn, 1998, 213(3): 322-333.
|
[3] |
Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies[J]. Genes Cancer, 2011, 2(12): 1097-1105.
|
[4] |
Witmer AN, Vrensen GFJM, Van Noorden CJF, et al. Vascular endothelial growth factors and angiogenesis in eye disease[J]. Prog Retin Eye Res, 2003, 22(1): 1-29.
|
[5] |
Tolentino M. Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease[J]. Surv Ophthalmol, 2011, 56(2): 95-113.
|
[6] |
Amoaku WM, Chakravarthy U, Gale R, et al. Defining response to anti-VEGF therapies in neovascular AMD[J]. Eye, 2015, 29(6): 721-731.
|
[7] |
Shui YB, Wang X, Hu JS, et al. Vascular endothelial growth factor expression and signaling in the lens[J]. Invest Ophthalmol Vis Sci, 2003, 44(9): 3911-3919.
|
[8] |
Ferrara N, Gerber HP, Lecouter J. The biology of VEGF and its receptors[J]. Nat Med, 2003, 9(6): 669-676.
|
[9] |
Holmes K, Roberts OL, Thomas AM, et al. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition[J]. Cell Signal, 2007, 19(10): 2003-2012.
|
[10] |
Usui T, Ishida S, Yamashiro K, et al. VEGF164 (165) as the pathological isoform: differential leukocyte and endothelial responses through VEGFR1 and VEGFR2[J]. Invest Ophthalmol Vis Sci, 2004, 45(2): 368-374.
|
[11] |
Muthusamy A, Lin CM, Shanmugam S, et al. Ischemia-reperfusion injury induces occludin phosphorylation/ubiquitination and retinal vascular permeability in a VEGFR-2-dependent manner[J]. J Cereb Blood Flow Metab, 2014, 34(3): 522-531.
|
[12] |
Kim M, Lee C, Payne R, et al. Angiogenesis in glaucoma filtration surgery and neovascular glaucoma: A review[J]. Surv Ophthalmol, 2015, 60(6): 524-535.
|
[13] |
Miranda-Cruz MM, Poom-Llamas JJ, Godoy-Lugo JA, et al. Silencing of HIF-1 in WSSV-infected white shrimp: effect on viral load and antioxidant enzymes[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2018, 213: 19-26.
|
[14] |
Tolentino M. Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease[J]. Surv Ophthalmol, 2011, 56(2): 95-113.
|
[15] |
Shui YB, Arbeit JM, Johnson RS, et al. HIF-1: an age-dependent regulator of lens cell proliferation[J]. Invest Ophthalmol Vis Sci, 2008, 49(11): 4961-4970.
|
[16] |
Chen Y, Doughman YQ, Gu S, et al. Cited2 is required for the proper formation of the hyaloid vasculature and for lens morphogenesis[J]. Development, 2008, 135(17): 2939-2948.
|
[17] |
Baba K, Muraguchi T, Imaoka S. Role of the hypoxia response pathway in lens formation during embryonic development of Xenopus laevis[J]. FEBS Open Bio, 2013, 3: 490-495.
|
[18] |
Goralska M, Fleisher LN, Mcgahan MC. Hypoxia induced changes in expression of proteins involved in iron uptake and storage in cultured lens epithelial cells[J]. Exp Eye Res, 2014, 125: 135-141.
|
[19] |
Chen Y, Wu Q, Miao A, et al. Effect of HSF4b on age related cataract may through its novel downstream target HIF-1α[J]. Biochem Biophys Res Commun, 2014, 453(3): 674-678.
|
[20] |
Han X, Wang XL, Li Q, et al. HIF-1alpha SUMOylation affects the stability and transcriptional activity of HIF-1alpha in human lens epithelial cells[J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(8): 1279-1290.
|
[21] |
Cammarata PR, Neelam S, Brooks MM. Inhibition of hypoxia inducible factor-1α downregulates the expression of epithelial to mesenchymal transition early marker proteins without undermining cell survival in hypoxic lens epithelial cells[J]. Mol Vis, 2015, 21: 1024-1035.
|
[22] |
Nahomi RB, Nagaraj RH. The role of HIF-1α in the TGF-β2-mediated epithelial-to-mesenchymal transition of human lens epithelial cells[J]. J Cell Biochem, 2018, 119(8): 6814-6827.
|
[23] |
Ferrara N, Gerber HP, Lecouter J. The biology of VEGF and its receptors[J]. Nat Med, 2003, 9(6): 669-676.
|
[24] |
Matsumoto K, Ohi H, Kanmatsuse K. Interleukin 10 and interleukin 13 synergize to inhibit vascular permeability factor release by peripheral blood mononuclear cells from patients with lipoid nephrosis[J]. Nephron, 1997, 77(2): 212-218.
|
[25] |
Okada F, Rak JW, Croix BS, et al. Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor-vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells[J]. Proc Natl Acad Sci USA, 1998, 95(7): 3609-3614.
|
[26] |
Levy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia[J]. J Biol Chem, 1996, 271(5): 2746-2753.
|
[27] |
Larrivee B, Karsan A. Signaling pathways induced by vascular endothelial growth factor (review)[J]. Int J Mol Med, 2000, 5(5): 447-456.
|
[28] |
Zhu M, Madigan MC, van Driel D, et al. The human hyaloid system: cell death and vascular regression[J]. Exp Eye Res, 2000, 70(6): 767-776.
|
[29] |
Ito M, Yoshioka M. Regression of the hyaloid vessels and pupillary membrane of the mouse[J]. Anat Embryol (Berl), 1999, 200(4): 403-411.
|
[30] |
Martin AC, Thornton JD, Liu J, et al. Pathogenesis of persistent hyperplastic primary vitreous in mice lacking the arf tumor suppressor gene[J]. Invest Ophthalmol Vis Sci, 2004, 45(10): 3387-3396.
|
[31] |
Gilbert RE, Vranes D, Berka JL, et al. Vascular endothelial growth factor and its receptors in control and diabetic rat eyes[J]. Lab Invest, 1998, 78(8): 1017-1027.
|
[32] |
Gogat K, Gat LL, Berghe LVD, et al. VEGF and KDR gene expression during human embryonic and fetal eye development[J]. Invest Ophthalmol Vis Sci, 2004, 45(1): 7-14.
|
[33] |
Mitchell CA, Rutland CS, Walker M, et al. Unique vascular phenotypes following over-expression of individual VEGFA isoforms from the developing lens[J]. Angiogenesis, 2006, 9(4): 209-224.
|
[34] |
Feeney SA, Simpson DAC, Gardiner TA, et al. Role of vascular endothelial growth factor and placental growth factors during retinal vascular development and hyaloid regression[J]. Invest Ophthalmol Vis Sci, 2003, 44(2): 839-847.
|
[35] |
Saint-Geniez M, Kurihara T, D′Amore PA. Role of cell and matrix-bound VEGF isoforms in lens development[J]. Invest Ophthalmol Vis Sci, 2009, 50(1): 311-321.
|
[36] |
Keel S, He M. Risk factors for age-related cataract[J]. Clin Exp Ophthalmol, 2018, 46(4): 327-328.
|
[37] |
Rajkumar S, Vasavada AR, Praveen MR, et al. Exploration of molecular factors impairing superoxide dismutase isoforms activity in human senile cataractous lenses[J]. Invest Ophthalmol Vis Sci, 2013, 54(9): 6224-6233.
|
[38] |
Wang S, Guo C, Yu M, et al. Identification of H2O2 induced oxidative stress associated microRNAs in HLE-B3 cells and their clinical relevance to the progression of age-related nuclear cataract[J]. BMC Ophthalmol, 2018, 18(1): 93.
|
[39] |
Marneros AG. NLRP3 inflammasome blockade inhibits VEGF-A-induced age-related macular degeneration[J]. Cell Rep, 2013, 4(5): 945-958.
|
[40] |
Marneros AG. Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms[J]. EMBO Mol Med, 2016, 8(3): 208-231.
|
[41] |
Ahmad A, Ahsan H. Biomarkers of inflammation and oxidative stress in ophthalmic disorders[J]. J Immunoassay Immunochem, 2020, 41(3): 257-271.
|
[42] |
Augusteyn RC. Growth of the human eye lens[J]. Mol Vis, 2007, 13: 252-257.
|
[43] |
Goda N, Ryan HE, Khadivi B, et al. Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia[J]. Mol Cell Biol, 2003, 23(1): 359-369.
|
[44] |
Lin C, Mcgough R, Aswad B, et al. Hypoxia induces HIF-1alpha and VEGF expression in chondrosarcoma cells and chondrocytes[J]. J Orthop Res, 2004, 22(6): 1175-1181.
|
[45] |
Klein BE, Klein R, Moss SE. Lens thickness and five-year cumulative incidence of cataracts: the beaver dam eye study[J]. Ophthalmic Epidemiol, 2000, 7(4): 243-248.
|
[46] |
Vieira-Potter VJ, Karamichos D, Lee DJ. Ocular complications of diabetes and therapeutic approaches[J]. Biomed Res Int, 2016: 3801570.
|
[47] |
Mitroviĉ S, Kelava T, Šuĉur A, et al. Levels of selected aqueous humor mediators (IL-10, IL-17, CCL2, VEGF, FasL) in diabetic cataract[J]. Ocul Immunol Inflamm, 2016, 24(2): 159-166.
|
[48] |
Caldwell RB, Bartoli M, Behzadian MA, et al. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives[J]. Diabetes Metab Res Rev, 2003, 19(6): 442-455.
|
[49] |
Bressler SB. Introduction: Understanding the role of angiogenesis and antiangiogenic agents in age-related macular degeneration[J]. Ophthalmology, 2009, 116(10): S1-S7.
|
[50] |
Paulus YM, Sodhi A. Anti-angiogenic therapy for retinal disease[J]. Handb Exp Pharmacol, 2017, 242: 271-307.
|
[51] |
Bessa AS, Ragab AM, Nassra RA, et al. Expression levels of aldose reductase enzyme, vascular endothelial growth factor, and intercellular adhesion molecule-1 in the anterior lens capsule of diabetic cataract patients[J]. J Cataract Refract Surg, 2018, 44(12): 1431-1435.
|
[52] |
Cvitkovic K, Sesar A, Sesar I, et al. Concentrations of selected cytokines and vascular endothelial growth factor in aqueous humor and serum of diabetic patients[J]. Semin Ophthalmol, 2020, 35(2): 1-8.
|
[53] |
Liu H, Smith AJ, Ball SB, et al. Sulforaphane promotes ER stress, autophagy, and cell death: implications for cataract surgery[J]. J Mol Med, 2017, 95(5): 553-564.
|
[54] |
Wormstone IM. Posterior capsule opacification: a cell biological perspective[J]. Exp Eye Res, 2002, 74(3): 337-347.
|
[55] |
Alon R, Assia EI, Kleinmann G. Prevention of posterior capsule opacification by an intracapsular open capsule device[J]. Invest Ophthalmol Vis Sci, 2014, 55(7): 4005-4013.
|
[56] |
Eldred JA, Mcdonald M, Wilkes HS, et al. Growth factor restriction impedes progression of wound healing following cataract surgery: identification of VEGF as a putative therapeutic target[J]. Sci Rep, 2016, 6: 24453.
|