[1] |
Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020[J]. Br J Ophthalmol, 2006, 90(3): 262-267.
|
[2] |
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review[J]. JAMA, 2014, 311(18): 1901-1911.
|
[3] |
Ting DSW, Peng L, Varadarajan AV, et al. Deep learning in ophthalmology: The technical and clinical considerations[J]. Prog Retin Eye Res, 2019, 72: 100759.
|
[4] |
He KZX, Ren S, Sun J. Deep residual learning for image recognition[J]. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, 29(5): 770-778.
|
[5] |
Zhou BKA, Lapedriza A, Oliva A, et al. Learning deep features for discriminative localization[J]. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, 38(10): 2921-2929.
|
[6] |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[7] |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 546(7660): 686-686.
|
[8] |
Ehteshami BB, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer[J]. JAMA, 2017, 318(22): 2199-2210.
|
[9] |
Raumviboonsuk P, Krause J, Chotcomwongse P, et al. Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program[J]. NPJ Digit Med, 2019, 2: 25.
|
[10] |
Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs[J]. JAMA, 2016, 316(22): 2402-2410.
|
[11] |
Ting DSW, Cheung CYL, Lim G, et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes[J]. Jama-J Am Med Assoc, 2017, 318(22): 2211-2223.
|
[12] |
Chakrabarty L, Joshi GD, Chakravarty A, et al. Automated Detection of Glaucoma From Topographic Features of the Optic Nerve Head in Color Fundus Photographs[J]. J Glaucoma, 2016, 25(7): 590-597.
|
[13] |
Annan L, Jun C, Wong DWK, et al. Integrating holistic and local deep features for glaucoma classification[J]. Conf Proc IEEE Eng Med Biol Soc, 2016, 43(11): 1328-1331.
|
[14] |
Li Z, He Y, Keel S, et al. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206.
|
[15] |
Liu H, Li L, Wormstone IM, et al. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs[J]. Jama Ophthalmol, 2019, 137(12): 1353-1360.
|
[16] |
Kermany DS, Goldbaum M, Cai W, et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning[J]. Cell, 2018, 172(5): 1122-1131.
|
[17] |
Singh A, Dutta MK, Partha SM, et al. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image[J]. Comput Meth Prog Bio, 2016, 124: 108-120.
|
[18] |
Waisbourd M, Pruzan NL, Johnson D, et al. The Philadelphia Glaucoma Detection and Treatment Project: Detection Rates and Initial Management[J]. Ophthalmology, 2016, 123(8): 1667-1674.
|
[19] |
Stevens GA, White RA, Flaxman SR, et al. Global prevalence of vision impairment and blindness: magnitude and temporal trends, 1990—2010[J]. Ophthalmology, 2013, 120(12): 2377-2384.
|
[20] |
Bourne RR, Stevens GA, White RA, et al. Causes of vision loss worldwide, 1990—2010: a systematic analysis[J]. Lancet Glob Health, 2013, 1(6): 339-349.
|
[21] |
Tham YC, Li X, Wong TY, et al. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090.
|
[22] |
Liang YB, Friedman DS, Zhou Q, et al. Prevalence of primary open angle glaucoma in a rural adult Chinese population: the Handan eye study[J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 8250-8257.
|
[23] |
Zhao D, Guallar E, Gajwani P, et al. Optimizing Glaucoma Screening in High-Risk Population: Design and 1-Year Findings of the Screening to Prevent (SToP) Glaucoma Study[J]. Am J Ophthalmol, 2017, 180: 18-28.
|
[24] |
Owsley C, Rhodes LA, Mcgwin G, et al. Eye Care Quality and Accessibility Improvement in the Community (EQUALITY) for adults at risk for glaucoma: study rationale and design[J]. Int J Equity Health, 2015, 14: 135.
|
[25] |
Tatham AJ, Medeiros FA, Zangwill LM, et al. Strategies to improve early diagnosis in glaucoma[J]. Prog Brain Res, 2015, 221: 103-133.
|
[26] |
Samples SP. The Glaucoma Book: a Practical, Evidence-Based Approach to Patient Care[M]. New York: Springer Science & Business Media, 2010.
|
[27] |
Pizzi LT, Waisbourd M, Hark L, et al. Costs of a community-based glaucoma detection programme: analysis of the Philadelphia Glaucoma Detection and Treatment Project[J]. Br J Ophthalmol, 2018, 102(2): 225-232.
|
[28] |
Miller SE, Thapa S, Robin AL, et al. Glaucoma Screening in Nepal: Cup-to-Disc Estimate With Standard Mydriatic Fundus Camera Compared to Portable Nonmydriatic Camera[J]. American Journal of Ophthalmology, 2017, 182: 99-106.
|
[29] |
Lee PP, Walt JG, Doyle JJ, et al. A multicenter, retrospective pilot study of resource use and costs associated with severity of disease in glaucoma[J]. Arch Ophthalmol-Chic, 2006, 124(1): 12-19.
|
[30] |
Teng CC, De Moraes CG, Prata TS, et al. Beta-Zone parapapillary atrophy and the velocity of glaucoma progression[J]. Ophthalmology, 2010, 117(5): 909-915.
|
[31] |
Masumoto H, Tabuchi H, Nakakura S, et al. Deep-learning Classifier with an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity[J]. J Glaucoma, 2018, 27(7): 647-652.
|
[32] |
Jonas JB, Nagaoka N, Fang YX, et al. Intraocular Pressure and Glaucomatous Optic Neuropathy in High Myopia[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5897-5906.
|
[33] |
Fu HZ, Cheng J, Xu YW, et al. Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image[J]. Ieee T Med Imaging, 2018, 37(11): 2493-2501.
|
[34] |
Jonas JB, Fang Y, Weber P, et al. Parapapillary Gamma and Delta Zones in High Myopia[J]. Retina, 2018, 38(5): 931-938.
|
[35] |
Zhang Z, Xu Y, Liu J, et al. Automatic diagnosis of pathological myopia from heterogeneous biomedical data[J]. Plos One, 2013, 8(6): e65736.
|
[36] |
Tan TE, Ting DSW, Liu Y, et al. Artificial intelligence using a deep learning system with transfer learning to predict refractive error and myopic macular degeneration from color fundus photographs[J]. Invest Ophth Vis Sci, 2019, 60(9): 1013-1018.
|