[1] |
罗臻,刘莉. 基于影响因子与h系列指数的期刊学术水平综合评价指标研究[J]. 情报杂志,2010,29(3):79-82.
|
[2] |
张子振. 学术期刊评价方法研究[J]. 科技信息,2010(12):19,21.
|
[3] |
Fukushima K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biol Cybern, 1980, 36(4): 193-202.
|
[4] |
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// International Conference on International Conference on Machine Learning. Lille: JMLR, 2015: 448-456.
|
[5] |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[EB/OL]. (2015-12-11)[2019-02-02].
URL
|
[6] |
Duda RO, Hart PE, Stork DG. Pattern Classification[M]. Hoboken: Wiley, 2001.
|
[7] |
Mookiah MR, Acharya UR, Chua CK, et al. Computer-aided diagnosis of diabetic retinopathy: a review[J]. Comput Biol Med, 2013, 43(12): 2136-2155.
|
[8] |
Shin H, Markey MK. A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples[J]. J Biomed Inform, 2006, 39(2): 227-248.
|
[9] |
Bowd C, Goldbaum MH. Machine learning classifiers in glaucoma[J]. Optom Vis Sci, 2008, 85(6): 396-405.
|
[10] |
Gupta A, Kekunnaya R, Ramappa M, et al. Safety profile of primary intraocular lens implantation in children less than 2 years of age[J]. Br J Ophthalmol 2011, 95(4): 477-480.
|
|
Caixinha M, Nunes S. Machine learning techniques in clinical vision sciences[J]. Curr Eye Res, 2017, 42(1): 1-15.
|
[11] |
Diprose W, Buist N. Artificial intelligence in medicine: humans need not apply?[J]. N Z Med J, 2016, 129(1434): 73-76.
|
[12] |
Mamoshina P, Vieira A, Putin E, et al. Applications of deep learning in biomedicine[J]. Mol Pharm, 2016, 13(5): 1445-1454.
|
[13] |
Doborjeh MG, Wang GY, Kasabov NK, et al. A spiking neural network methodology and system for learning and comparative analysis of EEG data from healthy versus addiction treated versus addiction not treated subjects[J]. IEEE Trans Biomed Eng, 2016, 63(9): 1830-1841.
|
[14] |
Mathe S, Sminchisescu C. Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(7): 1408-1424.
|
[15] |
Anam K, Al-Jumaily A. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees[J]. Neural Netw, 2017, 85: 51-68.
|
[16] |
Bertini JR, , Nicoletti MC, Zhao L. Attribute-based Decision Graphs: A framework for multiclass data classification[J]. Neural Netw, 2017, 85: 69-84.
|
[17] |
张秀兰,李飞. 人工智能和青光眼:机遇与挑战[J]. 中华实验眼科杂志,2018,36(4):245-247.
|
[18] |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. USA: IEEE, 2015: 1-9.
|
[19] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014: 1-14.
|
[20] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(12): 2481-2495.
|
[21] |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410.
|
[22] |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118.
|
[23] |
Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J]. JAMA, 2017, 318(22): 2199-2210.
|
[24] |
Orlando JI, Prokofyeva E, Del Fresno M, et al. An ensemble deep learning based approach for red lesion detection in fundus images[J]. Comput Methods Programs Biomed, 2018, 153: 115-127.
|
[25] |
Sun Z, de Roos AM. Seasonal reproduction leads to population collapse and an Allee effect in a stage-structured consumer-resource biomass model when mortality rate increases[J]. PLoS One, 2017, 12(10): e0187338.
|
[26] |
Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmol, 2017, 135(11): 1170-1176.
|
[27] |
Schlegl T, Waldstein SM, Bogunovic H, et al. Fully automated detection and quantification of macular fluid in OCT using deep learning[J]. Ophthalmology, 2018, 125(4): 549-558.
|
[28] |
Devalla SK, Chin KS, Mari JM, et al. A deep learning approach to digitally stain optical coherence tomography images of the optic nerve head[J]. Invest Ophthalmol Vis Sci, 2018, 59(1): 63-74.
|
[29] |
Masumoto H, Tabuchi H, Nakakura S, et al. Deep-learning classifier with an ultrawide-field scanning laser ophthalmoscope detects glaucoma visual field severity[J]. J Glaucoma, 2018, 27(7): 647-652.
|
[30] |
Mitra A, Banerjee PS, Roy S, et al. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning[J]. Comput Methods Programs Biomed, 2018, 165: 25-35.
|
[31] |
Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning[J]. Ophthalmology, 2017, 124(7): 962-969.
|
[32] |
Ferreira MV, Filho AO, Sousa AD, et al. Convolutional neural network and texture descriptor-based automatic detection and diagnosis of glaucoma[J]. Expert Systems with Applications, 2018, 110: 250-263.
|
[33] |
Grassmann F, Mengelkamp J, Brandl C, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography[J]. Ophthalmology, 2018, 125(9): 1410-1420.
|
[34] |
Cheng J, Li Z, Gu Z, et al. Structure-preserving guided retinal image filtering and its application for optic disk analysis[J]. IEEE Trans Med Imaging, 2018, 37(11): 2536-2546.
|
[35] |
Varadarajan AV, Poplin R, Blumer K, et al. Deep learning for predicting refractive error from retinal fundus images[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 2861-2868.
|
[36] |
Noor SSM, Michael K, Marshall S, et al. Hyperspectral image enhancement and mixture deep-learning classification of corneal epithelium injuries[J]. Sensors (Basel), 2017, 17(11): E2644.
|
[37] |
Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136(7): 803-810.
|
[38] |
Ohsugi H, Tabuchi H, Enno H, et al. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment[J]. Sci Rep, 2017, 7(1):9425.
|
[39] |
Asaoka R, Murata H, Iwase A, et al. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier[J]. Ophthalmology, 2016, 123(9): 1974-1980.
|
[40] |
Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206.
|
[41] |
Long E, Lin H, Liu Z, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[EB/OL]. (2017-01-30)[2019-01-02].
URL
|
[42] |
Sample PA, Boden C, Zhang Z, et al. Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields[J]. Invest Ophthalmol Vis Sci, 2005, 46(10): 3684-3692.
|
[43] |
Goldbaum MH, Sample PA, Zhang Z, et al. Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects[J]. Invest Ophthalmol Vis Sci, 2005, 46(10): 3676-3683.
|
[44] |
Goldbaum MH, Jang GJ, Bowd C, et al. Patterns of glauco-matous visual field loss in sita fields automatically identified using independent component analysis[J]. Trans Am Ophthalmol Soc, 2009, 107: 136-144.
|
[45] |
Racette L, Chiou CY, Hao J, et al. Combining functional and structural tests improves the diagnostic accuracy of relevance vector machine classifiers[J]. J Glaucoma, 2010, 19(3): 167-175.
|
[46] |
Goldbaum MH, Lee I, Jang G, et al. Progression of patterns (POP): a machine classifier algorithm to identify glaucoma progression in visual fields[J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6557-6567.
|
[47] |
Raza AS, Zhang X, De Moraes CG, et al. Improving glaucoma detection using spatially correspondent clusters of damage and by combining standard automated perimetry and optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 612-624.
|
[48] |
Bowd C, Lee I, Goldbaum MH, et al. Predicting glaucomatous progression in glaucoma suspect eyes using relevance vector machine classifiers for combined structural and functional measurements[J]. Invest Ophthalmol Vis Sci, 2012, 53(4): 2382-2389.
|
[49] |
Bowd C, Weinreb RN, Balasubramanian M, et al. Glaucomatous patterns in Frequency Doubling Technology (FDT) perimetry data identified by unsupervised machine learning classifiers[J]. PLoS One, 2014, 9(1): e85941.
|
[50] |
Abràmoff MD, Lou Y, Erginay A, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5200-5206.
|
[51] |
Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131.e9.
|
[52] |
De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24(9): 1342-1350.
|
[53] |
Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223.
|