切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (02) : 65 -70. doi: 10.3877/cma.j.issn.2095-2007.2019.02.001

述评

分析高影响力期刊发表的眼科文献特点认识深度学习算法在眼科研究中应用的意义
庞睿奇1, 刘含若2, 王宁利2,()   
  1. 1. 100730 首都医科大学附属北京同仁医院2018级硕士研究生
    2. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 北京市眼科学与视觉科学重点实验室
  • 收稿日期:2019-02-02 出版日期:2019-04-28
  • 通信作者: 王宁利
  • 基金资助:
    国家自然科学基金(81700813); 北京市医药协同科技创新研究(Z181100001918035); 北京市医院管理局"青苗"计划专项基金项目(QML20180205); 首都医科大学附属北京同仁医院种子基金项目(2016-YJJ-ZZL-021)

Analysis on the characteristics of ophthalmology papers published in highly impact journals and the significance of deep learning algorithm in ophthalmology research

Ruiqi Pang1, Hanruo Liu2, Ningli Wang2,()   

  1. 1. Master′s Degree 2018, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
    2. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Keynote Laboratory of Ophthalmology and Visual Science, Beijing Institute of Ophthalmology, Beijing 100730, China
  • Received:2019-02-02 Published:2019-04-28
  • Corresponding author: Ningli Wang
引用本文:

庞睿奇, 刘含若, 王宁利. 分析高影响力期刊发表的眼科文献特点认识深度学习算法在眼科研究中应用的意义[J]. 中华眼科医学杂志(电子版), 2019, 09(02): 65-70.

Ruiqi Pang, Hanruo Liu, Ningli Wang. Analysis on the characteristics of ophthalmology papers published in highly impact journals and the significance of deep learning algorithm in ophthalmology research[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(02): 65-70.

见刊于高影响力期刊的眼科文献具备较大共性。深度学习算法作为当下研究的热点,在眼科领域发表的稿件数量多,影响力大。本文中笔者以眼科深度学习领域的研究作为切入点,对眼科文献影响力进行分类,并对高影响力期刊上的眼科文献特点进行总结、评述。

Ophthalmology articles on highly impact journals have great commonalities. As a current research hot spot, deep learning topic has been published by a large number of researches, which have a great influence in the field of ophthalmology. We took the field of deep learning in ophthalmology as the entry point, classified the influence of ophthalmology article, and summarized the characteristics of ophthalmology literature in highly impact journals.

[1]
罗臻,刘莉. 基于影响因子与h系列指数的期刊学术水平综合评价指标研究[J]. 情报杂志201029(3):79-82.
[2]
张子振. 学术期刊评价方法研究[J]. 科技信息2010(12):19,21.
[3]
Fukushima K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biol Cybern, 1980, 36(4): 193-202.
[4]
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// International Conference on International Conference on Machine Learning. Lille: JMLR, 2015: 448-456.
[5]
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[EB/OL]. (2015-12-11)[2019-02-02].

URL    
[6]
Duda RO, Hart PE, Stork DG. Pattern Classification[M]. Hoboken: Wiley, 2001.
[7]
Mookiah MR, Acharya UR, Chua CK, et al. Computer-aided diagnosis of diabetic retinopathy: a review[J]. Comput Biol Med, 2013, 43(12): 2136-2155.
[8]
Shin H, Markey MK. A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples[J]. J Biomed Inform, 2006, 39(2): 227-248.
[9]
Bowd C, Goldbaum MH. Machine learning classifiers in glaucoma[J]. Optom Vis Sci, 2008, 85(6): 396-405.
[10]
Gupta A, Kekunnaya R, Ramappa M, et al. Safety profile of primary intraocular lens implantation in children less than 2 years of age[J]. Br J Ophthalmol 2011, 95(4): 477-480.
Caixinha M, Nunes S. Machine learning techniques in clinical vision sciences[J]. Curr Eye Res, 2017, 42(1): 1-15.
[11]
Diprose W, Buist N. Artificial intelligence in medicine: humans need not apply?[J]. N Z Med J, 2016, 129(1434): 73-76.
[12]
Mamoshina P, Vieira A, Putin E, et al. Applications of deep learning in biomedicine[J]. Mol Pharm, 2016, 13(5): 1445-1454.
[13]
Doborjeh MG, Wang GY, Kasabov NK, et al. A spiking neural network methodology and system for learning and comparative analysis of EEG data from healthy versus addiction treated versus addiction not treated subjects[J]. IEEE Trans Biomed Eng, 2016, 63(9): 1830-1841.
[14]
Mathe S, Sminchisescu C. Actions in the Eye: Dynamic Gaze Datasets and Learnt Saliency Models for Visual Recognition[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(7): 1408-1424.
[15]
Anam K, Al-Jumaily A. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees[J]. Neural Netw, 2017, 85: 51-68.
[16]
Bertini JR, , Nicoletti MC, Zhao L. Attribute-based Decision Graphs: A framework for multiclass data classification[J]. Neural Netw, 2017, 85: 69-84.
[17]
张秀兰,李飞. 人工智能和青光眼:机遇与挑战[J]. 中华实验眼科杂志201836(4):245-247.
[18]
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. USA: IEEE, 2015: 1-9.
[19]
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014: 1-14.
[20]
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(12): 2481-2495.
[21]
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410.
[22]
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118.
[23]
Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J]. JAMA, 2017, 318(22): 2199-2210.
[24]
Orlando JI, Prokofyeva E, Del Fresno M, et al. An ensemble deep learning based approach for red lesion detection in fundus images[J]. Comput Methods Programs Biomed, 2018, 153: 115-127.
[25]
Sun Z, de Roos AM. Seasonal reproduction leads to population collapse and an Allee effect in a stage-structured consumer-resource biomass model when mortality rate increases[J]. PLoS One, 2017, 12(10): e0187338.
[26]
Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmol, 2017, 135(11): 1170-1176.
[27]
Schlegl T, Waldstein SM, Bogunovic H, et al. Fully automated detection and quantification of macular fluid in OCT using deep learning[J]. Ophthalmology, 2018, 125(4): 549-558.
[28]
Devalla SK, Chin KS, Mari JM, et al. A deep learning approach to digitally stain optical coherence tomography images of the optic nerve head[J]. Invest Ophthalmol Vis Sci, 2018, 59(1): 63-74.
[29]
Masumoto H, Tabuchi H, Nakakura S, et al. Deep-learning classifier with an ultrawide-field scanning laser ophthalmoscope detects glaucoma visual field severity[J]. J Glaucoma, 2018, 27(7): 647-652.
[30]
Mitra A, Banerjee PS, Roy S, et al. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning[J]. Comput Methods Programs Biomed, 2018, 165: 25-35.
[31]
Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning[J]. Ophthalmology, 2017, 124(7): 962-969.
[32]
Ferreira MV, Filho AO, Sousa AD, et al. Convolutional neural network and texture descriptor-based automatic detection and diagnosis of glaucoma[J]. Expert Systems with Applications, 2018, 110: 250-263.
[33]
Grassmann F, Mengelkamp J, Brandl C, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography[J]. Ophthalmology, 2018, 125(9): 1410-1420.
[34]
Cheng J, Li Z, Gu Z, et al. Structure-preserving guided retinal image filtering and its application for optic disk analysis[J]. IEEE Trans Med Imaging, 2018, 37(11): 2536-2546.
[35]
Varadarajan AV, Poplin R, Blumer K, et al. Deep learning for predicting refractive error from retinal fundus images[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 2861-2868.
[36]
Noor SSM, Michael K, Marshall S, et al. Hyperspectral image enhancement and mixture deep-learning classification of corneal epithelium injuries[J]. Sensors (Basel), 2017, 17(11): E2644.
[37]
Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmol, 2018, 136(7): 803-810.
[38]
Ohsugi H, Tabuchi H, Enno H, et al. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment[J]. Sci Rep, 2017, 7(1):9425.
[39]
Asaoka R, Murata H, Iwase A, et al. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier[J]. Ophthalmology, 2016, 123(9): 1974-1980.
[40]
Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206.
[41]
Long E, Lin H, Liu Z, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts[EB/OL]. (2017-01-30)[2019-01-02].

URL    
[42]
Sample PA, Boden C, Zhang Z, et al. Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields[J]. Invest Ophthalmol Vis Sci, 2005, 46(10): 3684-3692.
[43]
Goldbaum MH, Sample PA, Zhang Z, et al. Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects[J]. Invest Ophthalmol Vis Sci, 2005, 46(10): 3676-3683.
[44]
Goldbaum MH, Jang GJ, Bowd C, et al. Patterns of glauco-matous visual field loss in sita fields automatically identified using independent component analysis[J]. Trans Am Ophthalmol Soc, 2009, 107: 136-144.
[45]
Racette L, Chiou CY, Hao J, et al. Combining functional and structural tests improves the diagnostic accuracy of relevance vector machine classifiers[J]. J Glaucoma, 2010, 19(3): 167-175.
[46]
Goldbaum MH, Lee I, Jang G, et al. Progression of patterns (POP): a machine classifier algorithm to identify glaucoma progression in visual fields[J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6557-6567.
[47]
Raza AS, Zhang X, De Moraes CG, et al. Improving glaucoma detection using spatially correspondent clusters of damage and by combining standard automated perimetry and optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 612-624.
[48]
Bowd C, Lee I, Goldbaum MH, et al. Predicting glaucomatous progression in glaucoma suspect eyes using relevance vector machine classifiers for combined structural and functional measurements[J]. Invest Ophthalmol Vis Sci, 2012, 53(4): 2382-2389.
[49]
Bowd C, Weinreb RN, Balasubramanian M, et al. Glaucomatous patterns in Frequency Doubling Technology (FDT) perimetry data identified by unsupervised machine learning classifiers[J]. PLoS One, 2014, 9(1): e85941.
[50]
Abràmoff MD, Lou Y, Erginay A, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning[J]. Invest Ophthalmol Vis Sci, 2016, 57(13): 5200-5206.
[51]
Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131.e9.
[52]
De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24(9): 1342-1350.
[53]
Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223.
[1] 杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑. 基于深度学习的超声心动图自动识别节段性室壁运动异常的研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 424-429.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 李锐颖, 危望, 王达志, 时志斌. 深度学习技术在膝关节疾病中的研究现状与展望[J]. 中华关节外科杂志(电子版), 2023, 17(05): 722-725.
[4] 庞亮月, 林焕彩. 人工智能在龋病诊疗中的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 162-166.
[5] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[6] 邢晓伟, 刘雨辰, 王明刚. 人工智能技术在疝和腹壁外科领域的应用及展望[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 390-393.
[7] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[8] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[9] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[10] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[11] 田亚, 吴美龙, 冯晓彬. 人工智能在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 258-262.
[12] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[13] 蔡紫妍, 段宣初, 杨翔. 深度学习算法在青光眼筛查与诊断中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 188-192.
[14] 郭少华, 耿世佳, 洪申达, 穆冠宇, 张一芝, 杨磊, 刘彤, 陈康寅. 人工智能辅助心电图识别无冠心病人群的临床研究[J]. 中华心脏与心律电子杂志, 2023, 11(01): 18-23.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要