切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2018, Vol. 08 ›› Issue (02) : 76 -81. doi: 10.3877/cma.j.issn.2095-2007.2018.02.005

所属专题: 文献

综述

调节性T细胞等关键免疫负向调节因子与自身免疫性葡萄膜炎相关性的研究进展
贺莉1, 喻京生1,()   
  1. 1. 410007 长沙,湖南中医药大学第一附属医院眼科
  • 收稿日期:2017-12-01 出版日期:2018-04-28
  • 通信作者: 喻京生
  • 基金资助:
    国家自然科学基金(81273808); 湖南省中医药管理局项目(2209-38-64)

Research Progress on the correlation of key immune negative regulating factors such as Treg cells and autoimmune uveitis

Li He1, Jingsheng Yu1,()   

  1. 1. Department of Ophthalmology, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
  • Received:2017-12-01 Published:2018-04-28
  • Corresponding author: Jingsheng Yu
  • About author:
    Corresponding author: Yu Jingsheng, Email:
引用本文:

贺莉, 喻京生. 调节性T细胞等关键免疫负向调节因子与自身免疫性葡萄膜炎相关性的研究进展[J]. 中华眼科医学杂志(电子版), 2018, 08(02): 76-81.

Li He, Jingsheng Yu. Research Progress on the correlation of key immune negative regulating factors such as Treg cells and autoimmune uveitis[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2018, 08(02): 76-81.

葡萄膜炎是由自身免疫系统紊乱导致的一种较常见的炎症性致盲性眼部疾病。目前,国内外学者的研究普遍认为,葡萄膜炎主要是由CD4T细胞介导产生。CD4T细胞可分为辅助性T细胞1(Th1)、辅助性T细胞2(Th2)、辅助性T细胞17(Th17)及调节性T细胞(Treg)四个亚群。既往研究主要集中于Th1、Th2及Th17细胞亚群。近年来,随着相关研究的不断深入,国内外学者发现,Treg细胞是负向调控葡萄膜炎的主要因素。Treg细胞能够抑制自身反应性T细胞的免疫反应、抑制传统T细胞的活化及促进某些抑制性细胞因子的分泌,从而在控制机体自身免疫性疾病的发生中发挥着重要作用。有学者研究发现,Treg细胞对维持机体的正常免疫耐受性具有十分重要的作用,它的数量及功能变化与许多免疫相关疾病的发生和发展有关。本文中笔者就Treg细胞与自身免疫性葡萄膜炎(EAU)的相关性研究进展进行综述。

Uveitis is a more common inflammatory blind eye disease caused by autoimmune disorders. At present, scholars at home and abroad have found that uveitis is mainly mediated by CD4+ T cells. CD4+ T cells were mainly divided into four subsets, including helper T cells 1 (Th1), helper T2 cells (Th2), helper T cells 17 (Th17) and regulatory T cells (Treg). Previous studies were mainly focused on Th1, Th2 and Th17 cell subsets. In recent years, with the development of related research, scholars at home and abroad have found that Treg cells are the main factors in the negative regulation of uveitis. Treg cells can inhibit the immune response of self reactive T cells, inhibit the activation of traditional T cells and promote the secretion of some inhibitory cytokines, which play an important role in maintaining the occurrence of autoimmune diseases. Some scholars have found that Treg cells play a very important role in maintaining normal immune tolerance of the body. Its quantity and function changes are related to the development of many immune related diseases. In this paper, the research progress on the correlation between Treg cells and autoimmune uveitis (EAU) is reviewed.

[5]
Trinh L, Brignole-Baudouin F, Pauly A, et al. Th1- and Th2-related chemokine and chemokine receptor expression on the ocular surface in endotoxin-induced uveitis[J]. Molecular Vision, 2008, 14(80):2428-2434.
[6]
Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. Journal of immunology, 1995, 155(3):1151-1164.
[7]
Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category[J]. Journal of Experimental Medicine, 2008, 205(4):799-810.
[8]
Horai R, Caspi RR. Cytokines in autoimmune uveitis[J]. Journal of interferon & cytokine research, 2011, 31(10):733-744.
[9]
Ruggieri S, Frassanito MA, Dammacco R, et al. Treg Lymphocytes in Autoimmune Uveitis[J]. Ocular Immunology & Inflammation, 2012, 20(4):255-261.
[10]
Ohkura N, Hamaguchi M, Morikawa H, et al. T Cell Receptor Stimulation-Induced Epigenetic Changes and Foxp3 Expression Are Independent and Complementary Events Required for Treg Cell Development[J]. Immunity, 2012, 37(5):785-799.
[11]
Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3[J]. Journal of Experimental Medicine, 2003, 198(12):1875-1886.
[12]
Cretney E, Xin A, Shi W, et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells[J]. Nature Immunology, 2011, 12(4):304-311.
[13]
张莲. 自身免疫性葡萄膜炎发病过程中Th17/Treg细胞及其相关炎性因子的动态表达研究[D]. 济南:山东中医药大学,2016.
[14]
Waight JD, Takai S, Marelli B, et al. Cutting Edge: Epigenetic Regulation of Foxp3 Defines a Stable Population of CD4+ Regulatory T Cells in Tumors from Mice and Humans[J]. J Immunol, 2015, 194(8):3533-3534.
[15]
Maggio R, Viscomi C, Andreozzi P, et al. Normocaloric Low Cholesterol Diet Modulates Th17/Treg Balance in Patients with Chronic Hepatitis C Virus Infection[J]. Digestive & Liver Disease, 2013, 45(12):e112346.
[16]
Klunker S, Chong MM, Mantel PY, et al. Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells[J]. Journal of Experimental Medicine, 2009, 206(12):2701-2715.
[17]
Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3[J]. Science, 2003, 299(5609):1057-1061.
[18]
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J]. Nature Immunology, 2003, 4(4):330-336.
[19]
Walker MR, Kasprowicz DJ, Gersuk VH, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells[J]. Journal of Clinical Investigation, 2003, 112(9):1437-1443.
[20]
Muranski P, Boni A, Antony PA, et al. Tumor-specific Th17-polarized cells eradicate large established melanoma[J]. Blood, 2008, 112(2):362-373.
[21]
Ruggieri S, Frassanito MA, Dammacco R, et al. Treg Lymphocytes in Autoimmune Uveitis[J]. Ocular Immunology & Inflammation, 2012, 20(4):255-261.
[22]
Taams LS, Palmer DB, Akbar AN, et al. Regulatory T cells in human disease and their potential for therapeutic manipulation[J]. Insect Science, 2006, 118(1):1-9.
[23]
Tilgner S, Hempel E, Sych FJ, et al. Experimentelle Chorioretinitis des Kaninchens durch homologe und heterologe Photoreceptor-Außensegmente[J]. Albrecht Von Graefes Archiv Für Klinische Und Experimentelle Ophthalmologie, 1975, 197(3):269-272.
[24]
Kalsow CM, Wacker WB. Localization of a Uveitogenic Soluble Retinal Antigen in the Normal Guinea Pig Eye by an Indirect Fluorescent Antibody Technique[J]. International Archives of Allergy & Applied Immunology, 1973, 44(1):11-20.
[25]
Suzuki I, Takahashi S, Fujii Y, et al. Experimental autoimmune uveoretinitis (EAU) in rats: abrogation of resistance to the induction and augmentation of the inflammation by pertussis toxin[J]. Japanese Journal of Ophthalmology, 1989, 33(1):27-35.
[26]
Kurtz SM, Kaump DH, Schardein JL, et al. The effecto f long-term administration of amopyroquin, a 4-aminoquinoline compound, on the retina of pigmented and nonpigmented laboratory animals[J]. Investigat Ophthalmol Vis Sci, 1967, 6(4):420-425.
[27]
Wacker WB. Autoimmune Uveitis (Choroiditis) in the Guinea Pig Sensitized with Homologous Uvea and its Differentiation from that Following Sensitization with Homologous Retina[J]. International Archives of Allergy & Immunology, 1972, 43(1):39-52.
[28]
Broekhuyse RM, Kuhlmann ED, Winkens HJ. Experimental autoimmune posterior uveitis accompanied by epitheloid cell accumulations (EAPU). A new type of experimental ocular disease induced by immunization with PEP-65, a pigment epithelial polypeptide preparation[J]. Experimental Eye Research, 1992, 55(6):819-829.
[29]
Braun G, Mckechnie NN. Absence of cellular responses to a putative autoantigen in onchocercal chorioretinopathy: cellular autoimmunity in onchocercal chorioretinopathy.[J]. Invest Ophthalmol Vis Sci, 1996, 37(2):1717-1719.
[30]
Wacker WB, Lipton MM. Experimental allergic uveitis. Ⅱ. Serologic and hypersensitive responses of the guinea pig following immunization with homologous retina[J]. Journal of Immunology, 1968, 101(1):157-165.
[31]
Liversidge JM, Sewell HF, Forrester JV. Human retinal pigment epithelial cells differentially express MHC class Ⅱ (HLA, DP, DR and DQ) antigens in response to in vitro stimulation with lymphokine or purified IFN-gamma[J]. Clinical & Experimental Immunology, 1988, 73(3):489-494.
[32]
Lenschow DJ, Ho SC, Sattar H, et al. Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse[J]. Journal of Experimental Medicine, 1995, 181(3):1145-1155.
[33]
Zaitseva M, Golding H, Manischewitz J, et al. Brucella abortus as a potential vaccine candidate: induction of interleukin-12 secretion and enhanced B7.1 and B7.2 and intercellular adhesion molecule 1 surface expression in elutriated human monocytes stimulated by heat-inactivated B. abortus[J]. Infection & Immunity, 1996, 64(8):3109-3117.
[34]
Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category[J]. Journal of Experimental Medicine, 2008, 205(4):799-810.
[1]
杨培增. 葡萄膜炎的研究进展[J]. 中华眼科杂志,2005,41(12):1149-1152.
[2]
Li Z, Liu B, Maminishkis A, et al. Gene expression profiling in autoimmune noninfectious uveitis disease[J]. Journal of Immunology, 2008, 181(7):5147-5157.
[3]
Huang X, Chen Y, Zhang F, et al. Peripheral Th17/Treg cell-mediated immunity imbalance in allergic rhinitis patients[J]. Braz J Otorhinolaryngol, 2014, 80(2):152-155.
[35]
Caspi RR. A look at autoimmunity and inflammation in the eye[J]. The Journal of clinical investigation, 2010, 120(9):3073-3083.
[36]
Fang CB, Zhou DX, Zhan SX, et al. Amelioration of Experimental Autoimmune Uveitis by Leflunomide in Lewis Rats[J]. Plos One, 2013, 8(4):e62071.
[37]
Chakir J, Shannon J, Molet S,et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type Ⅲ collagen expression[J]. Journal of Allergy clinical Immunology, 2003, 111(6):1293-1298.
[38]
Karen MR, Patrick SH. Morphology and Phylogenetic Analysis ofPaloueand Related Genera in the Brownea Clade (Detarieae, Caesalpinioideae)[J]. International Journal of Plant Sciences, 2006, 167(6):1229-1246.
[39]
Riddle BR, Jezkova T, Eckstut ME, et al. Cryptic divergence and revised species taxonomy within the Great Basin pocket mouse, Perognathus parvus (Peale, 1848), species group[J]. Journal of Mammalogy, 2014, 95(1):9-25.
[40]
Roychoudhuri R, Eil RL, Restifo NP. The interplay of effector and regulatory T cells in cancer[J]. Current Opinion in Immunology, 2015, 33(4):101-111.
[41]
Stasi R, Cooper N, Del PG, et al. Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab[J]. Blood, 2008, 112(4):1147-1150.
[42]
Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases[J]. Autoimmunity Reviews, 2014, 13(6):668-677.
[43]
Murthy AR, Rekha M, Usha H, et al. Treatment Guidelines and Prognosis of Immune Reconstitution Inflammatory Syndrome Patients: A Review[J]. Journal of International Oral Health Jioh, 2015, 7(4):92-95.
[44]
Zou W, Wu Z, Xiang X, et al. The expression and significance of T helper cell subsets and regulatory T cells CD4+CD25+ in peripheral blood of patients with human leukocyte antigen B27-positive acute anterior uveitis[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 2014, 252(4):665-672.
[45]
唐凯,郭大东,张莲,等. 龙胆泻肝汤对大鼠实验性自身免疫性葡萄膜炎的治疗作用[J]. 眼科新进展,2015,35(4):305-309.
[46]
Chi W, Yang P, Li B, et al. IL-23 promotes CD4+ T cells to produce IL-17 in Vogt-Koyanagi-Harada disease[J]. Journal of Allergy & Clinical Immunology, 2007, 119(5):1218-1224.
[47]
Huang YH, Zozulya AL, Weidenfeller C, et al. Specific central nervous system recruitment of HLA-G(+) regulatory T cells in multiple sclerosis[J]. Annals of Neurology, 2009, 66(2):171-183.
[48]
Montero E, Nussbaum G, Kaye JF, et al. Regulation of experimental autoimmune encephalomyelitis by CD4+,CD25+and CD8+T cells: analysis using depleting antibodies[J]. Journal of Autoimmunity, 2004, 23(1):1-7.
[49]
Nouza K. Outlooks of systemic enzyme therapy in rheumatoid arthritis and other immunopathological diseases[J]. Acta Universitatis Carolinae Medica, 1994, 40(4):101-104.
[50]
Lohr J, Knoechel B, Wang JJ, et al. Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease[J]. Journal of Experimental Medicine, 2006, 203(13):2785-2791.
[51]
Sun M, Yang P, Du L, et al. Increased Regulatory T Cells in Spleen during Experimental Autoimmune Uveoretinitis[J]. Ocular Immunology & Inflammation, 2010, 18(1):38-43.
[52]
Gündüz E, Teke HU, Bilge NS, et al. Regulatory T cells in Behçet's disease: is there a correlation with disease activity? Does regulatory T cell type matter?[J]. Rheumatology International, 2013, 33(12):3049-3054.
[53]
Agarwal RK, Horai R, Viley AM, et al. Abrogation of anti-retinal autoimmunity in IL-10 transgenic mice due to reduced T cell priming and inhibition of disease effector mechanisms[J]. Journal of Immunology, 2008, 180(8):5423-5429.
[54]
Schattner EJ, Elkon KB, Yoo DH, et al. CD40 ligation induces Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-1/Fas pathway[J]. Journal of Experimental Medicine, 1995, 182(5):1557-1565.
[55]
Von TC, Sieg C, Kaufmann U, et al. Effector T cells driving monophasic vs. relapsing/remitting experimental autoimmune uveitis show unique pathway signatures[J]. Molecular Immunology, 2010, 48(1):272-280.
[56]
Shukla SN, Agarwal SK, Singh SK, et al. Effect of COX-2 modulator on estrous cycle and prostaglandins secretion in buffalo (Bubalus bubalis)[J]. Indian Journal of Animal Sciences, 2011, 81(6):582-585.
[57]
王少程,葛庆曼,林锦镛,等. 白细胞介素-10对内毒素诱导的实验性葡萄膜炎的治疗作用[J]. 中华眼底病杂志,2010,26(5):439-443.
[58]
Levi M, Poll TVD, Cate HT, et al. Differential effects of anti-cytokine treatment on bronchoalveolar hemostasis in endotoxemic chimpanzees[J]. Am J Respir Crit Care Med, 1998, 158(1):92-98.
[59]
王宜强.眼科基础医学[M].北京:人民军医出版社,2010:375-378.
[60]
Cousins SW, McCabe MM, Danielpour D, et al. Identification of transforming growth factor-beta as an immunosuppressive factor in aqueous humor[J]. Inves Ophthalmol Vis Sci, 1991, 32(8):2201-2211.
[61]
Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing ROR gammat function[J]. Nature, 2008, 453(7192):236-240.
[62]
Lee SY, Lee SH, Yang EJ, et al. Metformin Ameliorates Inflammatory Bowel Disease by Suppression of the STAT3 Signaling Pathway and Regulation of the between Th17/Treg Balance[J]. Plos One, 2015, 10(9):e0135858.
[63]
Zhang B, An J, Shimada T, et al. Oral administration of Enterococcus faecalis FK-23 suppresses Th17 cell development and attenuates allergic airway responses in mice[J]. International Journal of Molecular Medicine, 2012, 30(2):248-254.
[64]
Schmidt A, Eriksson M, Shang MM, et al. Comparative Analysis of Protocols to Induce Human CD4+Foxp3+Regulatory T Cells by Combinations of IL-2, TGF-beta, Retinoic Acid, Rapamycin and Butyrate[J]. Plos One, 2016, 11(2):e0148474.
[65]
Betts BC, Abdelwahab O, Curran SA, et al. Janus kinase-2 inhibition induces durable tolerance to alloantigen by human dendritic cell-stimulated T cells yet preserves immunity to recall antigen[J]. Blood, 2011, 118(19):5330-5339.
[66]
滕达,毕宏生,崔彦. 葡萄膜炎相关细胞因子的研究进展[J]. 中国实用眼科杂志,2013,31(11):1382-1386.
[67]
Deaglio S, Dwyer KW, Friedman D, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression[J]. Journal of Experimental Medicine, 2007, 204(6):1257-1265.
[68]
Peres RS, Liew FY, Talbot J, et al. Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis[J]. Proceedings of the National Academy, 2015, 112(8):2509-2514.
[69]
Coombes JL, Siddiqui KRR, Arancibiacárcamo CV, et al. A functionally specialized population of mucosal CD103+DCs induces Foxp3+regulatory T cells via a TGF-β-and retinoic acid-dependent mechanism[J]. Journal of Experimental Medicine, 2007, 204(8):1757-1764.
[70]
Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma[J]. Journal of Immunology, 2002, 169(5):2756-2761.
[71]
Forrester JV, Klaska IP, Yu T, et al. Uveitis in mouse and man[J]. International Reviews of Immunology, 2013, 32(1):76-96.
[72]
Lu Y, Xu W, Zhou Y, et al. Regulatory Activity of Activated Murine Peripheral CD4+CD25-,T Cells: A Possible Mechanism of Feedback Regulation on Adaptive Immunity[J]. Scandinavian Journal of Immunology, 2006, 64(5):500-506.
[73]
Niedbala W, Wei XQ, Cai B, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells[J]. European Journal of Immunology, 2007, 37(11):3021-3029.
[74]
Bardel E, Larousserie F, Charlot-Rabiega P, et al. Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35[J]. Journal of Immunology, 2008, 181(10):6898-6905.
[75]
Gotsman I, Grabie N, Gupta R, et al. Impaired Regulatory T-Cell Response and Enhanced Atherosclerosis in the Absence of Inducible Costimulatory Molecule[J]. Circulation, 2006, 114(19):2047-2055.
[76]
Egwuagu CE, Yu CR, Sun L, et al. Interleukin 35: Critical Regulator of Immunity and Lymphocyte-mediated Diseases[J]. Cytokine & Growth Factor Reviews, 2015, 26(5):587-593.
[4]
陈暐,陈玲. 自身免疫性葡萄膜炎与Th1、Th17相关细胞因子的研究进展[J]. 中华实验眼科杂志,2014,32(10):943-949.
[1] 柴浩卜, 王俏杰, 张先龙. 具有骨免疫调节性能的骨科生物材料研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 37-43.
[2] 胡欧婵, 黄仲英. 不明原因复发性流产患者的治疗研究现状与展望[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(01): 16-22.
[3] 梁冬梅, 王燕, 戴峻. 调节性T细胞与子宫内膜异位症关系的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(06): 627-633.
[4] 邓欣怡, 曾振宇, 李晓岚. 细菌群体感应信号对宿主免疫调节机制的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 140-147.
[5] 向文静, 何建华, 董贝贝, 陈晓涛. 慢性牙周炎伴冠心病患者Th17/Treg细胞平衡的临床意义[J]. 中华口腔医学研究杂志(电子版), 2020, 14(05): 302-307.
[6] 曹婉悦, 李蕾, 汪涛, 徐军明. 芳香烃受体在免疫调节中的作用及与程序性死亡受体1的联系[J]. 中华普通外科学文献(电子版), 2021, 15(03): 220-223.
[7] 顾艳利, 宋勇, 张方. 姜黄素在肺部炎症性疾病中的免疫调节作用[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 539-542.
[8] 施我大, 张亚军, 施展, 吴纪祥, 常绘文, 易忠权, 梁晓东, 周晶晶, 宋建祥. Treg细胞通过上调TGF-β1和B7-H3表达促进食管癌细胞增殖、迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 65-75.
[9] 曾伟杰, 廖延, 胡樾, 胡隽源, 曾桂芳, 傅泽钦, 伍世铎, 梁晓, 谢长峰, 刘沐芸. 冻存前后人脐带间充质干细胞对T和B淋巴细胞免疫抑制能力的差异比较[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 200-206.
[10] 冯晓玲, 高鸿亮. ω-3 PUFAs对小鼠炎症性肠病调节性T细胞影响的研究[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(06): 354-358.
[11] 冉凤英, 陈龙, 罗丹, 陈琴华. 间充质干细胞外泌体的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(05): 292-296.
[12] 彭绪峰. 间充质干细胞外泌体的免疫调节功能及其在自身免疫炎性疾病中的应用[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(04): 246-250.
[13] 刘娟丽, 马四清, 陈强. 肺表面活性蛋白-D功能及其在肺部常见疾病中的研究进展[J]. 中华重症医学电子杂志, 2022, 08(02): 167-172.
[14] 茅敏, 李秀, 王子丹, 单亮. 血小板及其表面受体配体在脓毒症凝血病中作用的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(04): 302-307.
[15] 龚榕铨, 曹恒山, 马敏. 外泌体源性miRNA在子痫前期发病机制中的研究进展[J]. 中华临床医师杂志(电子版), 2020, 14(12): 1017-1022.
阅读次数
全文


摘要